Comparative Analysis of Effect of Culture Conditions on Growth and C-Phycocyanin Production in Helical and Linear Spirulina

Silva SC, Ferreira ICFR, Dias MM, Barreiro MF (2020) Microalgae-Derived pigments: a 10-year bibliometric review and industry and market trend analysis. Molecules 25:3406. https://doi.org/10.3390/molecules25153406

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kratzer R, Murkovic M (2021) Food ingredients and nutraceuticals from microalgae: main product classes and biotechnological production. Foods 10:1626. https://doi.org/10.3390/foods10071626

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Sayed ESM, Hikal MS, Abo El-Khair BE et al (2018) hypoglycemic and hypolipidemic effects of spirulina platensis, phycocyanin, phycocyanopeptide and phycocyanobilin on male diabetic rats. Arab Univ J Agric Sci 26:1121–1134. https://doi.org/10.21608/ajs.2018.28365

Article  Google Scholar 

Braune S, Krüger-Genge A, Kammerer S et al (2021) Phycocyanin from arthrospira platensis as potential anti-cancer drug: review of in vitro and in vivo studies. Life 11:91. https://doi.org/10.3390/life11020091

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pez Jaeschke D, Rocha Teixeira I, Damasceno Ferreira Marczak L, Domeneghini Mercali G (2021) Phycocyanin from spirulina: a review of extraction methods and stability. Food Res Int 143:110314. https://doi.org/10.1016/j.foodres.2021.110314

Article  CAS  PubMed  Google Scholar 

Arora Soni R, Rana R (2017) Spirulina—from growth to nutritional product: a review. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2017.09.010

Article  Google Scholar 

Pagels F, Guedes AC, Amaro HM et al (2019) Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnol Adv 37:422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010

Article  CAS  PubMed  Google Scholar 

Sili C, Torzillo G, Vonshak A (2012) Arthrospira (Spirulina). In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, Netherlands, pp 677–705

Chapter  Google Scholar 

Habib MAB (2008) A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations, Rome

Google Scholar 

Alfadhly NKZ, Alhelfi N, Altemimi AB et al (2022) Tendencies affecting the growth and cultivation of genus Spirulina: an investigative review on current trends. Plants 11:3063. https://doi.org/10.3390/plants11223063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowicka-Krawczyk P, Mühlsteinová R, Hauer T (2019) Detailed characterization of the arthrospira type species separating commercially grown taxa into the new genus limnospira (cyanobacteria). Sci Rep 9:694. https://doi.org/10.1038/s41598-018-36831-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalla Costa V, Filippini R, Zusso M et al (2022) Monitoring of Spirulina flakes and powders from italian companies. Molecules 27:3155. https://doi.org/10.3390/molecules27103155

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abreu AP, Martins R, Nunes J (2023) Emerging applications of chlorella sp. and Spirulina (arthrospira) sp. Bioengineering 10:955. https://doi.org/10.3390/bioengineering10080955

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang ZP, Zhao Y (2005) Morphological reversion of Spirulina (arthrospira) platensis (cyanophyta): from linear to helical1. J Phycol 41:622–628. https://doi.org/10.1111/j.1529-8817.2005.00087.x

Article  Google Scholar 

Noor P, Akhtar N, Munshi JL, Begum S (2008) Spirulina culture in bangladesh XII: effects of different culture media, different culture vessels and different cultural conditions on coiled and straight filament characteristics of Spirulina. Bangladesh J Sci Ind Res 43:369–376. https://doi.org/10.3329/bjsir.v43i3.1152

Article  Google Scholar 

Young KD (2007) Bacterial morphology: why have different shapes? Curr Opin Microbiol, 10(6), 596–600. https://doi.org/10.1016/j.mib.2007.09.009

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Shang M, Xu X et al (2022) Analysis of morphological change mechanism of linear arthrospira platensis based on transcriptome results. Gene 834:146573. https://doi.org/10.1016/j.gene.2022.146573

Article  CAS  PubMed  Google Scholar 

Chen H-W, Yang T-S, Chen M-J et al (2014) Purification and immunomodulating activity of c-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochem 49:1337–1344. https://doi.org/10.1016/j.procbio.2014.05.006

Article  CAS  Google Scholar 

Chen H-B, Wu J-Y, Wang C-F et al (2010) Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53:52–56. https://doi.org/10.1016/j.bej.2010.09.004

Article  CAS  Google Scholar 

Akimoto S, Yokono M, Hamada F et al (2012) Adaptation of light-harvesting systems of arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489. https://doi.org/10.1016/j.bbabio.2012.01.006

Article  CAS  PubMed  Google Scholar 

Markou G (2014) Effect of various colors of light-emitting diodes (leds) on the biomass composition of arthrospira platensis cultivated in semi-continuous mode. Appl Biochem Biotechnol 172:2758–2768. https://doi.org/10.1007/s12010-014-0727-3

Article  CAS  PubMed  Google Scholar 

Yim S-K, Ki D-W, Doo H-S et al (2016) Internally illuminated photobioreactor using a novel type of light-emitting diode (led) bar for cultivation of arthrospira platensis. Biotechnol Bioproc 21:767–776. https://doi.org/10.1007/s12257-016-0428-6

Article  CAS  Google Scholar 

Xie Y, Jin Y, Zeng X et al (2015) Fed-batch strategy for enhancing cell growth and c-phycocyanin production of arthrospira (Spirulina) platensis under phototrophic cultivation. Biores Technol 180:281–287. https://doi.org/10.1016/j.biortech.2014.12.073

Article  CAS  Google Scholar 

Aiba S, Ogawa T (1977) Assessment of growth yield of a blue—green alga, Spirulina platensis, in axenic and continuous culture. Microbiology 102:179–182. https://doi.org/10.1099/00221287-102-1-179

Article  Google Scholar 

Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey JP, Tiwari A, Singh S, Tiwari D (2011) Potential of different light intensities on the productivity of Spirulina maxima

Ogbonda KH, Aminigo RE, Abu GO (2007) influence of temperature and ph on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol 98:2207–2211. https://doi.org/10.1016/j.biortech.2006.08.028

Article  CAS  PubMed  Google Scholar 

Babu M, Ashok K, Senthil J, Kalaiyarasu T (2020) Effect of Ph on arthrospira platensis production. Alochana Chakra J IX(V):1–10

Google Scholar 

Gonzalez Bautista E, Laroche C (2021) Arthrospira platensis as a feasible feedstock for bioethanol production. Appl Sci 11:6756. https://doi.org/10.3390/app11156756

Article  CAS  Google Scholar 

Sharma G, Kumar M, Irfan AM (2014) Effect of carbon content, salinity and ph on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J Microb Biochem Technol. https://doi.org/10.4172/1948-5948.1000144

Article  Google Scholar 

Cheng J, Zhu Y, Xu X et al (2019) Enhanced biomass productivity of arthrospira platensis using zeolitic imidazolate framework-8 as carbon dioxide adsorbents. Biores Technol 294:122118. https://doi.org/10.1016/j.biortech.2019.122118

Article  CAS  Google Scholar 

Moraes CC, Sala L, Cerveira GP, Kalil SJ (2011) C-phycocyanin extraction from Spirulina platensis wet biomass. Braz J Chem Eng 28:45–49. https://doi.org/10.1590/s0104-66322011000100006

Article  CAS  Google Scholar 

de Alava D, de Mello PC, Wagener K (1997) The relevance of the co2 partial pressure of sodium bicarbonate solutions for the mass cultivation of the microalga Spirulina. J Braz Chem Soc 8:447–450. https://doi.org/10.1590/s0103-50531997000500004

Article  Google Scholar 

Borges JA, Rosa GM, Meza LHR et al (2013) Spirulina sp. leb-18 culture using effluent from the anaerobic digestion. Braz J Chem Eng 30:277–288. https://doi.org/10.1590/s0104-66322013000200006

Article  CAS  Google Scholar 

Poonia S, Priya K (2013) Environmental stress: response, mechanism and its regulation in cyanobacterium Spirulina. Int J Bioassays 2:1000–1010

Google Scholar 

Vieira Costa JA, Colla LM, Filho PD (2003) Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Zeitschrift für Naturforschung C 58:76–80. https://doi.org/10.1515/znc-2003-1-214

Article  Google Scholar 

Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. https://doi.org/10.1007/s00253-004-1647-x

Article  CAS  PubMed  Google Scholar 

Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420. https://doi.org/10.1007/bf00422279

Article  Google Scholar 

Pade N, Hagemann M (2015) Salt acclimation of cyanobacteria and their application in biotechnology. Life 5:25–49. https://doi.org/10.3390/life5010025

Article 

留言 (0)

沒有登入
gif