Layered plaque is associated with high levels of vascular inflammation and vulnerability in patients with stable angina pectoris

Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: Role of healed plaque disruption. Heart 82:265–268. https://doi.org/10.1136/hrt.82.3.265

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burke AP, Kolodgie FD, Farb A et al (2001) Healed plaque ruptures and sudden coronary death evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940. https://doi.org/10.1161/01.cir.103.7.934

Article  CAS  PubMed  Google Scholar 

Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275. https://doi.org/10.1161/01.atv.20.5.1262

Article  CAS  PubMed  Google Scholar 

Otsuka F, Joner M, Prati F et al (2014) Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 11:379–389. https://doi.org/10.1038/nrcardio.2014.62

Article  PubMed  Google Scholar 

Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–26. https://doi.org/10.1056/NEJM199901143400207

Antoniades C, Antonopoulos AS, Deanfield J (2020) Imaging residual inflammatory cardiovascular risk. Eur Heart J 41:748–758. https://doi.org/10.1093/eurheartj/ehz474

Article  CAS  PubMed  Google Scholar 

Antonopoulos AS, Sanna F, Sabharwal N et al (2017) Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med 9:eaal2658. https://doi.org/10.1126/scitranslmed.aal2658

Article  CAS  PubMed  Google Scholar 

Oikonomou EK, Marwan M, Desai MY et al (2018) Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. The Lancet 392:929–939. https://doi.org/10.1016/S0140-6736(18)31114-0

Article  Google Scholar 

Stone GW, Maehara A, Lansky AJ et al (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235. https://doi.org/10.1056/nejmoa1002358

Article  CAS  PubMed  Google Scholar 

Xing L, Higuma T, Wang Z et al (2017) Clinical significance of lipid-rich plaque detected by optical coherence tomography: a 4-year follow-up study. J Am Coll Cardiol 69:2502–2513. https://doi.org/10.1016/j.jacc.2017.03.556

Article  PubMed  Google Scholar 

Aguirre AD, Arbab-Zadeh A, Soeda T et al (2021) Optical coherence tomography of plaque vulnerability and rupture: JACC focus seminar part 1/3. J Am Coll Cardiol 78:1257–1265. https://doi.org/10.1016/j.jacc.2021.06.050

Article  PubMed  PubMed Central  Google Scholar 

Araki M, Park SJ, Dauerman HL et al (2022) Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat Rev Cardiol 19:684–703. https://doi.org/10.1038/s41569-022-00687-9

Article  PubMed  PubMed Central  Google Scholar 

Lin A, Nerlekar N, Munnur RK et al (2020) Cholesterol crystal-induced coronary inflammation: insights from optical coherence tomography and pericoronary adipose tissue computed tomography attenuation. J Cardiovasc Comput Tomogr 14(3):277–278. https://doi.org/10.1016/j.jcct.2019.11.011

Article  CAS  PubMed  Google Scholar 

Yuki H, Sugiyama T, Suzuki K et al (2023) Coronary inflammation and plaque vulnerability: a coronary computed tomography and optical coherence tomography study. Circ Cardiovasc Imaging 16:E014959. https://doi.org/10.1161/CIRCIMAGING.122.014959

Article  PubMed  Google Scholar 

Sugiyama T, Kanaji Y, Hoshino M et al (2023) Relationship of OCT-defined plaque characteristics with CCTA-derived coronary inflammation and CMR-derived global coronary flow reserve in patients with acute coronary syndrome. PLoS One 18:e0286196. https://doi.org/10.1371/journal.pone.0286196

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbara S, Blanke P, Maroules CD et al (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee: endorsed by the north American society for cardiovascular imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449. https://doi.org/10.1016/j.jcct.2016.10.002

Article  PubMed  Google Scholar 

Lee SE, Sung JM, Andreini D et al (2022) Association between changes in perivascular adipose tissue density and plaque progression. JACC Cardiovasc Imaging 15:1760–1767. https://doi.org/10.1016/j.jcmg.2022.04.016

Article  PubMed  Google Scholar 

Ferencik M, Mayrhofer T, Bittner DO et al (2018) Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the promise randomized clinical trial. JAMA Cardiol 3:144–152. https://doi.org/10.1001/jamacardio.2017.4973

Article  PubMed  PubMed Central  Google Scholar 

Goeller M, Achenbach S, Cadet S et al (2018) Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol 3:858–863. https://doi.org/10.1001/jamacardio.2018.1997

Article  PubMed  PubMed Central  Google Scholar 

Araki M, Sugiyama T, Nakajima A et al (2022) Level of vascular inflammation is higher in acute coronary syndromes compared with chronic coronary disease. Circ Cardiovasc Imaging 15:E014191. https://doi.org/10.1161/CIRCIMAGING.122.014191

Article  PubMed  Google Scholar 

Nakajima A, Sugiyama T, Araki M et al (2022) Plaque rupture, compared with plaque erosion, is associated with a higher level of pancoronary inflammation. JACC Cardiovasc Imaging 15:828–839. https://doi.org/10.1016/j.jcmg.2021.10.014

Article  PubMed  Google Scholar 

Fracassi F, Crea F, Sugiyama T et al (2019) Healed culprit plaques in patients with acute coronary syndromes. J Am Coll Cardiol 73:2253–2263. https://doi.org/10.1016/j.jacc.2018.10.093

Article  PubMed  Google Scholar 

Shimokado A, Matsuo Y, Kubo T et al (2018) In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis 275:35–42. https://doi.org/10.1016/j.atherosclerosis.2018.05.025

Article  CAS  PubMed  Google Scholar 

Oikonomou EK, Antoniades C (2019) The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol 16:83–99. https://doi.org/10.1038/s41569-018-0097-6

Article  PubMed  Google Scholar 

Guglielmo M, Lin A, Dey D et al (2021) Epicardial fat and coronary artery disease: role of cardiac imaging. Atherosclerosis 321:30–38. https://doi.org/10.1016/j.atherosclerosis.2021.02.008

Article  CAS  PubMed  Google Scholar 

Antonopoulos AS, Tousoulis D (2017) The molecular mechanisms of obesity paradox. Cardiovasc Res 113:1074–1086. https://doi.org/10.1093/cvr/cvx106

Article  CAS  PubMed  Google Scholar 

Tzolos E, Williams MC, McElhinney P et al (2022) Pericoronary adipose tissue attenuation, low-attenuation plaque burden, and 5-year risk of myocardial infarction. JACC Cardiovasc Imaging 15:1078–1088. https://doi.org/10.1016/j.jcmg.2022.02.004

Article  PubMed  PubMed Central  Google Scholar 

Russo M, Fracassi F, Kurihara O, et al (2020) Healed plaques in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 1587–1597. https://doi.org/10.1161/ATVBAHA.120.314298

Kimura S, Isshiki A, Shimizu M et al (2023) Clinical significance of coronary healed plaques in stable angina pectoris patients undergoing percutaneous coronary intervention. Circ J. https://doi.org/10.1253/circj.cj-23-0031

Article  PubMed  Google Scholar 

Araki M, Yonetsu T, Kurihara O et al (2021) Predictors of rapid plaque progression: an optical coherence tomography study. JACC Cardiovasc Imaging 14:1628–1638. https://doi.org/10.1016/j.jcmg.2020.08.014

Article  PubMed  Google Scholar 

Uemura S, Ishigami K, Soeda T et al (2012) Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J 33:78–85. https://doi.org/10.1093/eurheartj/ehr284

Article  PubMed  Google Scholar 

Nakamura S, Inami S, Murai K et al (2014) Relationship between cholesterol crystals and culprit lesion characteristics in patients with stable coronary artery disease: an optical coherence tomography study. Clin Res Cardiol 103:1015–1021. https://doi.org/10.1007/s00392-014-0748-5

Article  CAS  PubMed  Google Scholar 

Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2346–2425. https://doi.org/10.1056/NEJMoa035655

Article  Google Scholar 

Sluimer JC, Kolodgie FD, Bijnens APJJ et al (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 53:1517–1527. https://doi.org/10.1016/j.jacc.2008.12.056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virmani R, Kolodgie FD, Burke AP et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061. https://doi.org/10.1161/01.ATV.0000178991.71605.18

Article  CAS  PubMed  Google Scholar 

Abela GS, Aziz K (2006) Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events - A novel insight into plaque rupture by scanning electron microscopy. Scanning 28:1–10. https://doi.org/10.1002/sca.4950280101

留言 (0)

沒有登入
gif