Efficacy and utility of antifibrinolytics in pediatric spine surgery: a systematic review and network meta-analysis

Lebl DR, Urban MK (2020) Perioperative Care of the Complex Spine and Scoliosis Surgery Patient. Perioperative Care of the Orthopedic Patient. :379 – 92

Janssen SJ, Braun Y, Wood KB, Cha TD, Schwab JH (2015) Allogeneic blood transfusions and postoperative infections after lumbar spine surgery. Spine J 15(5):901–909

Article  PubMed  Google Scholar 

Madjdpour C, Spahn D (2005) Allogeneic red blood cell transfusions: efficacy, risks, alternatives and indications. Br J Anaesth 95(1):33–42

Article  CAS  PubMed  Google Scholar 

Hu SS (2004) Blood loss in adult spinal surgery. Eur Spine J 13:S3–S5

Article  PubMed  PubMed Central  Google Scholar 

Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, Ker K Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Reviews. 2011(3).

Wang M, Zheng X-F, Jiang L-S (2015) Efficacy and Safety of Antifibrinolytic Agents in reducing perioperative blood loss and transfusion requirements in scoliosis surgery: a systematic review and Meta-analysis. PLoS ONE 10(9):e0137886

Article  PubMed  PubMed Central  Google Scholar 

Yang B, Li H, Wang D, He X, Zhang C, Yang P (2013) Systematic review and meta-analysis of perioperative intravenous tranexamic acid use in spinal surgery. PLoS ONE 8(2):e55436

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li G, Sun T-W, Luo G, Zhang C (2017) Efficacy of antifibrinolytic agents on surgical bleeding and transfusion requirements in spine surgery: a meta-analysis. Eur Spine J 26:140–154

Article  CAS  PubMed  Google Scholar 

Mannucci PM (1998) Hemostatic drugs. N Engl J Med 339(4):245–253

Article  CAS  PubMed  Google Scholar 

Yuan C, Zhang H, He S (2013) Efficacy and safety of using antifibrinolytic agents in spine surgery: a meta-analysis. PLoS ONE 8(11):e82063

Article  PubMed  PubMed Central  Google Scholar 

Aghajanian S, Shafiee A, Ahmadi A, Elsamadicy AA (2023) Assessment of the impact of frailty on adverse surgical outcomes in patients undergoing surgery for intracranial tumors using modified frailty index: a systematic review and meta-analysis. J Clin Neurosci 114:120–128

Article  PubMed  Google Scholar 

Kasimian S, Skaggs DL, Sankar WN, Farlo J, Goodarzi M, Tolo VT (2008) Aprotinin in pediatric neuromuscular scoliosis surgery. Eur Spine J 17(12):1671–1675

Article  PubMed  PubMed Central  Google Scholar 

Khoshhal K, Mukhtar I, Clark P, Jarvis J, Letts M, Splinter W (2003) Efficacy of aprotinin in reducing blood loss in spinal fusion for idiopathic scoliosis. J Pediatr Orthop 23(5):661–664

Article  PubMed  Google Scholar 

Lykissas MG, Crawford AH, Chan G, Aronson LA, Al-Sayyad MJ (2013) The effect of tranexamic acid in blood loss and transfusion volume in adolescent idiopathic scoliosis surgery: a single-surgeon experience. J Child Orthop 7(3):245–249

Article  PubMed  PubMed Central  Google Scholar 

Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM (2001) A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg 93(1):82–87

Article  CAS  PubMed  Google Scholar 

Newton PO, Bastrom TP, Emans JB, Shah SA, Shufflebarger HL, Sponseller PD et al (2012) Antifibrinolytic agents reduce blood loss during pediatric vertebral column resection procedures. Spine (Phila Pa 1976) 37(23):E1459–E1463

Article  PubMed  Google Scholar 

Saleh AN, Mostafa RH (2018) Increased nociception following administration of different doses of tranexamic acid in adolescent idiopathic scoliosis surgery. Open Anesth J. ;12(1)

Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F (2005) Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology 102(4):727–732

Article  CAS  PubMed  Google Scholar 

Shapiro F, Zurakowski D, Sethna NF (2007) Tranexamic acid diminishes intraoperative blood loss and transfusion in spinal fusions for Duchenne muscular dystrophy scoliosis. Spine 32(20):2278–2283

Article  PubMed  Google Scholar 

Thompson GH, Florentino-Pineda I, Poe-Kochert C (2005) The role of Amicar in decreasing perioperative blood loss in idiopathic scoliosis. Spine 30(17 SUPPL):S94–S9

Article  PubMed  Google Scholar 

Thompson GH, Florentino-Pineda I, Poe-Kochert C, Armstrong DG, Son-Hing J (2008) Role of amicar in surgery for neuromuscular scoliosis. Spine 33(24):2626–2629

Article  Google Scholar 

Thompson GH, Florentino-Pineda I, Poe-Kochert C, Armstrong DG, Son-Hing JP (2008) The role of amicar in same-day anterior and posterior spinal fusion for idiopathic scoliosis. Spine 33(20):2237–2242

Article  PubMed  Google Scholar 

Verma K, Errico T, Diefenbach C, Hoelscher C, Peters A, Dryer J et al (2014) The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am 96(10):e80

Article  PubMed  Google Scholar 

Yagi M, Hasegawa J, Nagoshi N, Iizuka S, Kaneko S, Fukuda K et al (2012) Does the intraoperative tranexamic acid decrease operative blood loss during posterior spinal fusion for treatment of adolescent idiopathic scoliosis? Spine (Phila Pa 1976) 37(21):E1336–E1342

Article  PubMed  Google Scholar 

Schur MD, Blumstein GW, Ross PA, Andras LM, Skaggs DL (2017) Second place award: tranexamic acid and intrathecal morphine are synergistic in reducing transfusion requirements in pediatric posterior spinal fusion. Curr Orthop Pract 28(4):341–347

Article  Google Scholar 

Ahlers CG, Lan M, Schoenecker JG, Borst AJ (2022) Blood loss and transfusion in a Pediatric scoliosis surgery cohort in the antifibrinolytic era. J Pediatr Hematol Oncol 44(3):e701–e6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berney MJ, Dawson PH, Phillips M, Lui DF, Connolly P (2015) Eliminating the use of allogeneic blood products in adolescent idiopathic scoliosis surgery. Eur J Orthop Surg Traumatol 25(Suppl 1):S219–S223

Article  PubMed  Google Scholar 

Bosch P, Kenkre TS, Soliman D, Londino JA, Novak NE (2019) Comparison of the Coagulation Profile of adolescent idiopathic scoliosis patients undergoing posterior spinal Fusion with and without Tranexamic Acid. Spine Deform 7(6):910–916

Article  PubMed  Google Scholar 

Chou SH, Lin SY, Wu MH, Tien YC, Jong YJ, Liang WC et al (2021) Intravenous tranexamic acid reduces blood loss and transfusion volume in scoliosis surgery for spinal muscular atrophy: results of a 20-year retrospective analysis. Int J Environ Res Public Health 18:19

Article  Google Scholar 

Cole JW, Murray DJ, Snider RJ, Bassett GS, Bridwell KH, Lenke LG (2003) Aprotinin reduces blood loss during spinal surgery in children. Spine (Phila Pa 1976) 28(21):2482–2485

Article  PubMed  Google Scholar 

Florentino-Pineda I, Blakemore LC, Thompson GH, Poe-Kochert C, Adler P, Tripi P (2001) The effect of ε-Aminocaproic acid on perioperative blood loss in patients with idiopathic scoliosis undergoing posterior spinal fusion: a preliminary prospective study. Spine 26(10):1147–1151

Article  CAS  PubMed  Google Scholar 

Florentino-Pineda I, Thompson GH, Poe-Kochert C, Huang RP, Haber LL, Blakemore LC (2004) The Effect of Amicar on Perioperative Blood loss in idiopathic scoliosis: the results of a prospective, randomized double-blind study. Spine 29(3):233–238

Article  PubMed  Google Scholar 

Goobie SM, Zurakowski D, Glotzbecker MP, McCann ME, Hedequist D, Brustowicz RM et al (2018) Tranexamic acid is efficacious at decreasing the rate of blood loss in adolescent scoliosis surgery: a randomized placebo-controlled trial. J Bone Joint Surg Am 100(23):2024–2032

Article  PubMed  Google Scholar 

Greenfield HM, Colovic V, Gharib MI, Rushman S, Patel DK, Will AM, Walker RWM (2004) Efficacy of aprotinin in reducing blood loss in paediatric patients undergoing major spinal surgery. Blood 104(11):742A–A

Article  Google Scholar 

Halanski MA, Cassidy JA, Hetzel S, Reischmann D, Hassan N (2014) The efficacy of Amicar Versus Tranexamic Acid in Pediatric spinal deformity surgery: a prospective, randomized, double-blinded pilot study. Spine Deform 2(3):191–197

Article  PubMed  Google Scholar 

Hideshima T, Akazawa T, Iinuma M, Torii Y, Ueno J, Yoshida A, Niki H (2021) Tranexamic acid reduces total blood loss and the amount of stored preoperative autologous blood donation needed for adolescent idiopathic scoliosis patients undergoing posterior spinal Fusion. Cureus 13(6):e15488

PubMed  PubMed Central  Google Scholar 

Dhawale AA, Shah SA, Sponseller PD, Bastrom T, Neiss G, Yorgova P et al (2012) Are antifibrinolytics helpful in decreasing blood loss and transfusions during spinal fusion surgery in children with cerebral palsy scoliosis? Spine 37(9):E549–E55

Article  PubMed  Google Scholar 

Ezhevskaya AA, Prusakova ZB, Zagrekov VI, Sosnin AV, Milenovic M (2018) Efficacy assessment of epidural blockade and tranexamic acid application in idiopathic scoliosis surgery. Sovrem Tehnol Med 10(4):164–172

Article  Google Scholar 

Halpern LM, Bronson WE, Kogan CJ (2021) A New Low Dose of Tranexamic Acid for decreasing the rate of blood loss in posterior spinal Fusion for adolescent idiopathic scoliosis. J Pediatr Orthop 41(6):333–337

Article  PubMed  Google Scholar 

Mihas A, Ramchandran S, Rivera S, Mansour A, Asghar J, Shufflebarger H, George S (2021) Safe and effective performance of pediatric spinal deformity surgery in patients unwilling to accept blood transfusion: a clinical study and review of literature. BMC Musculoskelet Disord 22(1):1–8

Article  Google Scholar 

Hassan N, Halanski M, Wincek J, Reischman D, Sanfilippo D, Rajasekaran S et al (2011) Blood management in pediatric spinal deformity surgery: review of a 2-year experience. Transfusion 51(10):2133–2141

Article 

留言 (0)

沒有登入
gif