The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis

Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215:108427.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alimohamadi Y, Sepandi M, Taghdir M, Hosamirudsari H. Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis. J Prev Med Hyg. 2020;61:E304–12.

PubMed  PubMed Central  Google Scholar 

Russell MV, et al. Systematic review of reviews of symptoms and signs of COVID-19 in children and adolescents. Arch Dis Child. 2021;106:802.

Article  Google Scholar 

Case SM, Son MB. COVID-19 in Pediatrics. Rheumatic Disease Clin North Am. 2021;47:797–811.

Article  Google Scholar 

Lopez-Leon S, et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep. 2022;12:9950.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thallapureddy K, et al. Long-term complications of COVID-19 infection in adolescents and children. Curr Pediatr Rep. 2022;10:11–7.

Article  PubMed  PubMed Central  Google Scholar 

Bukulmez H. (2021) Current understanding of Multisystem Inflammatory Syndrome (MIS-C) following COVID-19 and its distinction from Kawasaki Disease. Curr Rheumatol Rep 23.

Consiglio CR, et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell. 2020;183:968–e981967.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gottlieb M, Bridwell R, Ravera J, Long B. Multisystem inflammatory syndrome in children with COVID-19. Am J Emerg Med. 2021;49:148–52.

Article  PubMed  PubMed Central  Google Scholar 

Hoste L, Van Paemel R, Haerynck F. (2021) Multisystem inflammatory syndrome in children related to COVID-19: a systematic review. Eur J Pediatr.

Rafferty MS, et al. Multisystem inflammatory syndrome in children (MIS-C) and the coronavirus pandemic: current knowledge and implications for public health. J Infect Public Health. 2021;14:484–94.

Article  PubMed  PubMed Central  Google Scholar 

Feldstein LR, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383:334–46.

Article  CAS  PubMed  Google Scholar 

Dionne A, Son MBF, Randolph AG. An update on multisystem inflammatory syndrome in children related to SARS-CoV-2. Pediatr Infect Dis J. 2022;41:e6–9.

Article  PubMed  Google Scholar 

Lopez L, et al. Lower risk of multi-system inflammatory syndrome in children (MIS-C) with the omicron variant. Lancet Reg Health - Western Pac. 2022;27:100604.

Article  Google Scholar 

Eleftheriou I, et al. Decreasing incidence of the Multisystem Inflammatory Syndrome in Children over 3 pandemic waves. Pediatr Infect Dis J. 2023;42:122–4.

Article  PubMed  Google Scholar 

Feldstein LR, et al. Characteristics and outcomes of US children and adolescents with Multisystem Inflammatory Syndrome in Children (MIS-C) compared with severe Acute COVID-19. JAMA. 2021;325:1074.

Article  CAS  PubMed  Google Scholar 

Cantarutti N, et al. Long-Term Cardiovascular Outcome in children with MIS-C linked to SARS-CoV-2 Infection—An Italian Multicenter experience. Biology. 2022;11:1474.

Article  PubMed  PubMed Central  Google Scholar 

Miller J, et al. Gastrointestinal symptoms as a major presentation component of a Novel Multisystem Inflammatory Syndrome in Children that is related to Coronavirus Disease 2019: a single Center experience of 44 cases. Gastroenterology. 2020;159:1571–e15741572.

Article  CAS  PubMed  Google Scholar 

Whittaker E, et al. Clinical characteristics of 58 children with a Pediatric Inflammatory Multisystem Syndrome temporally Associated with SARS-CoV-2. JAMA. 2020;324:259–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pouletty M, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020;79:999–1006.

Article  CAS  PubMed  Google Scholar 

Klavina L et al. (2023) Comparison of characteristics and outcomes of Multisystem Inflammatory Syndrome, Kawasaki Disease and toxic shock syndrome in children. Med (Kaunas) 59.

Rodriguez-Smith JJ, et al. Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: a cohort study. Lancet Rheumatol. 2021;3:e574–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrams JY, et al. Trends in treatments for Multisystem Inflammatory Syndrome in Children (MIS-C), United States, February 2020– July 2021. Clin Infect Dis. 2022;75:1201–9.

Article  CAS  PubMed  Google Scholar 

Penner J, et al. 6-month multidisciplinary follow-up and outcomes of patients with paediatric inflammatory multisystem syndrome (PIMS-TS) at a UK tertiary paediatric hospital: a retrospective cohort study. Lancet Child Adolesc Health. 2021;5:473–82.

Article  CAS  PubMed  Google Scholar 

Fraser DD, et al. Novel outcome biomarkers identified with targeted proteomic analyses of plasma from critically ill coronavirus Disease 2019 patients. Crit Care Explor. 2020;2:e0189.

Article  PubMed  PubMed Central  Google Scholar 

Iosef C, et al. COVID-19 plasma proteome reveals novel temporal and cell-specific signatures for disease severity and high-precision disease management. J Cell Mol Med. 2023;27:141–57.

Article  CAS  PubMed  Google Scholar 

Patel MA, et al. Organ and cell-specific biomarkers of Long-COVID identified with targeted proteomics and machine learning. Mol Med. 2023;29:26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Nynatten LR, et al. Novel plasma protein biomarkers from critically ill sepsis patients. Clin Proteom. 2022;19:50.

Article  Google Scholar 

Miller MR, et al. Putative concussion biomarkers identified in adolescent male athletes using targeted plasma proteomics. Front Neurol. 2021;12:787480.

Article  PubMed  PubMed Central  Google Scholar 

Iosef C, et al. Plasma proteome of Long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function. J Transl Med. 2023;21:377.

Article  CAS  PubMed  PubMed Central  Google Scholar 

CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel [Internet]. Available from: https://www.fda.gov/media/134922/download.

Brisson AR, Matsui D, Rieder MJ, Fraser DD. Translational research in pediatrics: tissue sampling and biobanking. Pediatrics. 2012;129:153–62.

Article  PubMed  Google Scholar 

Gillio-Meina C, Cepinskas G, Cecchini EL, Fraser DD. Translational research in pediatrics II: blood collection, processing, shipping, and storage. Pediatrics. 2013;131:754–66.

Article  PubMed  Google Scholar 

Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39:e102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Assarsson E, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE. 2014;9:e95192.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Parmigiani G, Johnson WE. (2020) ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genomics Bioinf 2.

Team RC. (2023) R: A Language and Environment for Statistical Computing. In. R Foundation for Statistical Computing, Vienna, Austria.

Leek Jt JWEPHSFEJJAEZYSJDTLC. (2023) sva: Surrogate Variable Analysis. In.

Tang C, Garreau D, von Luxburg U. (2018) When do random forests fail? In: NeurIPS pp. 2987–97.

Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30:1145–59.

Article  Google Scholar 

Van der Maaten L, Hinton G. (2008) Visualizing data using t-SNE. J Mach Learn Res 9.

Jambu M. Chap. 10 - classification of individuals–variables data sets. In: Jambu M, editor. Exploratory and Multivariate Data Analysis. Boston: Academic; 1991. pp. 305–405.

Chapter  Google Scholar 

Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Google Scholar 

Terpilowski MA. scikit-posthocs: pairwise multiple comparison tests in Python. J Open Source Softw. 2019;4:1169.

Article  Google Scholar 

Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bateman A, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9.

Article  Google Scholar 

Zhang Y, Zhang Y, Qi P, Manning CD, Langlotz CP. Biomedical and clinical English model packages for the Stanza Python NLP library. J Am Med Inform Assoc. 2021;28:1892–9.

Article  PubMed  PubMed Central  Google Scholar 

Qi P, Zhang Y, Zhang Y, Bolton J, Manning CD. (2020) Stanza: A Python natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082.

留言 (0)

沒有登入
gif