Selective vulnerability of hippocampal sub-regions in patients with subcortical vascular mild cognitive impairment

Bai, T., Wei, Q., Xie, W., Wang, A., Wang, J., Gong-Jun, J., & Tian, Y. (2019). Hippocampal-subregion functional alterations associated with antidepressant effects and cognitive impairments of electroconvulsive therapy. PSYCHOLOGICAL MEDICINE, 49(8), 1357–1364.

Article  PubMed  Google Scholar 

Christidi, F., Karavasilis, E., Rentzos, M., Velonakis, G., Zouvelou, V., Xirou, S., & Ferentinos, P. (2019). Hippocampal pathology in amyotrophic lateral sclerosis: Selective vulnerability of subfields and their associated projections. Neurobiology Of Aging, 84, 178–188.

Article  PubMed  Google Scholar 

Das, T., Hwang, J. J., & Poston, K. L. (2019). Episodic recognition memory and the hippocampus in Parkinson’s disease: A review. Cortex, 113, 191–209.

Article  PubMed  Google Scholar 

Devanand, D., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., & Mayeux, R. (2007). Hippocampal and entorhinal atrophy in mild cognitive impairment: Prediction of Alzheimer disease. Neurology, 68(11), 828–836.

Article  CAS  PubMed  Google Scholar 

Fraser, M. A., Shaw, M. E., & Cherbuin, N. J. N. (2015). A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. 112, 364–374.

Hamilton, O. K., Backhouse, E. V., Janssen, E., Jochems, A. C., Maher, C., Ritakari, T. E., & Wardlaw, J. M. (2021). Cognitive impairment in sporadic cerebral small vessel disease: A systematic review and meta-analysis. Alzheimer’s & Dementia, 17(4), 665–685.

Article  Google Scholar 

Hampel, H., & Lista, S. (2016). The rising global tide of cognitive impairment. Nature Reviews Neurology, 12(3), 131–132.

Article  CAS  PubMed  Google Scholar 

Han, J. W., Maillard, P., Harvey, D., Fletcher, E., Martinez, O., Johnson, D. K., & DeCarli, C. (2020). Association of vascular brain injury, neurodegeneration, amyloid, and cognitive trajectory. Neurology, 95(19), e2622–e2634. https://doi.org/10.1212/wnl.0000000000010531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, M., Li, Y., Zhou, L., Li, Y., Lei, T., Yan, W., & Chen, L. (2022). Relationships between Memory impairments and hippocampal structure in patients with subcortical ischemic vascular disease. Frontiers in Aging Neuroscience, 14, 823535. https://doi.org/10.3389/fnagi.2022.823535.

Article  PubMed  PubMed Central  Google Scholar 

Hou, G., Yang, X., & Yuan, T. F. (2013). Hippocampal asymmetry: Differences in structures and functions. Neurochemical Research, 38(3), 453–460. https://doi.org/10.1007/s11064-012-0954-3.

Article  CAS  PubMed  Google Scholar 

Huang, Y., Huang, L., Wang, Y., Liu, Y., Lo, C. Y. Z., & Guo, Q. (2022). Differential associations of visual memory with hippocampal subfields in subjective cognitive decline and amnestic mild cognitive impairment. BMC Geriatrics, 22(1), 1–10.

Article  CAS  Google Scholar 

Iadecola, C., Duering, M., Hachinski, V., Joutel, A., Pendlebury, S. T., Schneider, J. A., & Dichgans, M. (2019). Vascular cognitive impairment and dementia: JACC scientific expert panel. Journal of the american college of cardiology. 73(25), 3326–3344.

Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., & Wald, L. L. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. J N, 115, 117–137.

Google Scholar 

Jack, C. R. Jr., Wiste, H. J., Weigand, S. D., Knopman, D. S., Mielke, M. M., Vemuri, P., & Petersen, R. C. (2015). Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. (1460–2156 (Electronic)).

Jia, J., Wei, C., Liang, J., Zhou, A., Zuo, X., Song, H., & Huang, L. (2016). The effects of DL-3-n-butylphthalide in patients with vascular cognitive impairment without dementia caused by subcortical ischemic small vessel disease: A multicentre, randomized, double-blind, placebo-controlled trial. Alzheimer’s & Dementia, 12(2), 89–99. https://doi.org/10.1016/j.jalz.2015.04.010.

Article  Google Scholar 

Kang, D. W., Lim, H. K., Joo, S., Lee, N. R., & Lee, C. U. (2018). J. N. d., & treatment. The association between hippocampal subfield volumes and education in cognitively normal older adults and amnestic mild cognitive impairment patients. 143–152.

Kesner, R. P. (2013). An analysis of the dentate gyrus function. Behavioural Brain Research, 254, 1–7. https://doi.org/10.1016/j.bbr.2013.01.012.

Article  PubMed  Google Scholar 

Kirino, T., & Sano, K. (1984). Selective vulnerability in the gerbil hippocampus following transient ischemia. ACTA NEUROPATHOLOGICA, 62, 201–208.

Article  CAS  PubMed  Google Scholar 

Kril, J., Patel, S., Harding, A., & Halliday, G. (2002). Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss. Journal of Neurology Neurosurgery & Psychiatry, 72(6), 747–751.

Article  CAS  Google Scholar 

Li, X., Li, D., Li, Q., Li, Y., Li, K., Li, S., & Han, Y. (2016). Hippocampal subfield volumetry in patients with subcortical vascular mild cognitive impairment. Scientific Reports, 6(1), 20873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, T., Deng, R., Wang, X., Liu, P., Xiao, Q. X., Liu, Q., & Zhang, Y. (2022). Mechanisms of hypoxia in the hippocampal CA3 region in postoperative cognitive dysfunction after cardiopulmonary bypass. Journal of Cardiothoracic Surgery, 17(1), 106. https://doi.org/10.1186/s13019-022-01865-z.

Article  PubMed  PubMed Central  Google Scholar 

Long, X., Jiang, C., & Zhang, L. (2018). Morphological Biomarker Differentiating MCI Converters from Nonconverters: Longitudinal Evidence Based on Hemispheric Asymmetry. Behav Neurol, 2018, 3954101. https://doi.org/10.1155/2018/3954101.

Mueller, S. G., Schuff, N., Yaffe, K., Madison, C., Miller, B., & Weiner, M. W. (2010). Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease. Human brain mapping, 31(9), 1339–1347.

Article  PubMed  PubMed Central  Google Scholar 

Nakashiba, T., Buhl, D. L., McHugh, T. J., & Tonegawa, S. (2009). Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron, 62(6), 781–787. https://doi.org/10.1016/j.neuron.2009.05.013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nasreddine, Z. S., Phillips Na Fau - Bédirian, V., Bédirian, V., Fau - Charbonneau, S., Charbonneau, S., Fau - Whitehead, V., Whitehead, V. F., Collin, I., Collin, I. F., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. (0002-8614 (Print)).

Oschwald, J., Guye, S., Liem, F., Rast, P., Willis, S., Röcke, C., & Mérillat, S. (2019). Brain structure and cognitive ability in healthy aging: A review on longitudinal correlated change. Reviews in the neurosciences, 31(1), 1–57.

Article  PubMed  PubMed Central  Google Scholar 

Perrotin, A., de Flores, R., Lamberton, F., Poisnel, G., La Joie, R., de la Sayette, V., & Chételat, G. (2015). Hippocampal subfield volumetry and 3D surface mapping in subjective cognitive decline. (1875–8908 (Electronic)).

Petersen, R. C., Ge Fau, S., Waring, S. C., Waring Sc Fau - Ivnik, R. J., Ivnik Rj Fau - Tangalos, E. G., Tangalos Eg Fau - Kokmen, E., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. (0003-9942 (Print)).

Pluta, J., Yushkevich, P., Das, S., & Wolk, D. J. (2012). J. o. A. s. d. In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI. 31(1), 85–99.

Puonti, O., Iglesias, J. E., & Van Leemput, K. J. N. (2016). Fast and sequence-adaptive whole-brain segmentation using parametric bayesian modeling. 143, 235–249.

Sarica, A., Vasta, R., Novellino, F., Vaccaro, M. G., Cerasa, A., & Quattrone, A. (2018). MRI asymmetry index of hippocampal Subfields increases through the Continuum from the mild cognitive impairment to the Alzheimer’s Disease. Front Neurosci, 12, 576. https://doi.org/10.3389/fnins.2018.00576.

Article  PubMed  PubMed Central  Google Scholar 

Saygin, Z. M., Kliemann, D., Iglesias, J. E., van der Kouwe, A. J. W., Boyd, E., Reuter, M., & Augustinack, J. C. (2017). High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas. Neuroimage, 155, 370–382. https://doi.org/10.1016/j.neuroimage.2017.04.046.

Article  CAS  PubMed  Google Scholar 

Shi, F., Liu, B., Zhou, Y., Yu, C., & Jiang, T. (2009). Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus, 19(11), 1055–1064. https://doi.org/10.1002/hipo.20573.

Article  PubMed  Google Scholar 

Sun, R., Ge, B., Wu, S., Li, H., & Lin, L. J. A. (2023). J. o. P. Optimal cut-off MoCA score for screening for mild cognitive impairment in elderly individuals in China: A systematic review and meta-analysis. 103691.

Suthana, N. A., Donix, M., Wozny, D. R., Bazih, A., Jones, M., Heidemann, R. M., & Bookheimer, S. Y. (2015). High-resolution 7T fMRI of human hippocampal subfields during associative learning. Journal of Cognitive Neuroscience, 27(6), 1194–1206. https://doi.org/10.1162/jocn_a_00772.

Article  PubMed  Google Scholar 

Tatu, L., & Vuillier, F. (2014). Structure and vascularization of the human hippocampus. Frontiers of Neurology and Neuroscience, 34, 18–25. https://doi.org/10.1159/000356440.

Article  PubMed  Google Scholar 

Thong, J. Y., Du, J., Ratnarajah, N., Dong, Y., Soon, H. W., Saini, M., & Qiu, A. (2014). Abnormalities of cortical thickness, subcortical shapes, and white matter integrity in subcortical vascular cognitive impairment. Human Brain Mapping, 35(5), 2320–2332. https://doi.org/10.1002/hbm.22330.

Article  PubMed  Google Scholar 

Van Der Flier, W. M., Skoog, I., Schneider, J. A., Pantoni, L., Mok, V., Chen, C. L., & Scheltens, P. (2018). Vascular cognitive impairment. Nature Reviews Disease Primers, 4(1), 1–16.

Google Scholar 

Vatrinet, R., Leone, G., De Luise, M., Girolimetti, G., Vidone, M., Gasparre, G., & Porcelli, A. M. (2017). The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab, 5, 3. https://doi.org/10.1186/s40170-017-0165-0.

Article  PubMed  PubMed Central  Google Scholar 

Woolard, A. A., & Heckers, S. (2012). Anatomical and functional correlates of human hippocampal volume asymmetry. Psychiatry Research, 201(1), 48–53. https://doi.org/10.1016/j.pscychresns.2011.07.016.

Article  PubMed  PubMed Central  Google Scholar 

Xu, J., Li, W., Bai, T., Li, J., Zhang, J., Hu, Q., & Wang, K. (2022). Volume of hippocampus-amygdala transition area predicts outcomes of electroconvulsive therapy in major depressive disorder: High accuracy validated in two independent cohorts (pp. 1–10). PSychological Medicine.

Yamamoto, Y., Hase, Y., Ihara, M., Khundakar, A., Roeber, S., Duering, M., & Kalaria, R. N. (2021). Neuronal densities and vascular pathology in the hippocampal formation in CADASIL. Neurobiology of Aging, 97, 33–40. https://doi.org/10.1016/j.neurobiolaging.2020.09.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yushkevich, P. A., Avants, B. B., Das, S. R., Pluta, J., Altinay, M., Craige, C., & Neuroimage, A. (2010). s. D. N. I. J. Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3 T MRI data. 50(2), 434–445.

Zotin, M. C. Z., Sveikata, L., Viswanathan, A., & Yilmaz, P. (2021). Cerebral small vessel disease and vascular cognitive impairment: From diagnosis to management. Current opinion in neurology. 34(2), 246.

留言 (0)

沒有登入
gif