Acute effects of high-intensity exercise on brain mechanical properties and cognitive function

Ai, J. Y., Chen, F. T., Hsieh, S. S., Kao, S. C., Chen, A. G., Hung, T. M., & Chang, Y. K. (2021). The effect of acute high-intensity interval training on executive function: A systematic review. International Journal of Environmental Research and Public Health, 18(7). https://doi.org/10.3390/ijerph18073593

Alfini, A. J., Weiss, L. R., Leitner, B. P., Smith, T. J., Hagberg, J. M., & Smith, J. C. (2016). Hippocampal and cerebral blood flow after exercise cessation in master athletes. Frontiers in Aging Neuroscience, 8(AUG), 1–9. https://doi.org/10.3389/fnagi.2016.00184

Article  Google Scholar 

Ando, S., Komiyama, T., Sudo, M., Higaki, Y., Ishida, K., Costello, J. T., & Katayama, K. (2020). The interactive effects of acute exercise and hypoxia on cognitive performance: a narrative review. Scandinavian Journal of Medicine and Science in Sports, 30(3), 384–398. https://doi.org/10.1111/sms.13573

Article  PubMed  Google Scholar 

Arani, A., Min, H. K., Fattahi, N., Wetjen, N. M., Trzasko, J. D., Manduca, A., Jack, C. R., Lee, K. H., Ehman, R. L., & Huston, J. (2018). Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model. Magnetic Resonance in Medicine, 79(2), 1043–1051. https://doi.org/10.1002/mrm.26738

Article  CAS  PubMed  Google Scholar 

Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2008). Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task. Acta Psychologica, 129(3), 410–419. https://doi.org/10.1016/j.actpsy.2008.09.006

Article  PubMed  Google Scholar 

Baek, S.-S. (2016). Role of exercise on the brain. Journal of Exercise Rehabilitation, 12(5), 380–385. https://doi.org/10.12965/jer.1632808.404

Article  PubMed  PubMed Central  Google Scholar 

Bertalan, G., Boehm-Sturm, P., Schreyer, S., Morr, A. S., Steiner, B., Tzschätzsch, H., ... & Sack, I. (2019). The influence of body temperature on tissue stiffness, blood perfusion, and water diffusion in the mouse brain. Acta Biomaterialia, 96, 412–420

Billinger, S. A., Craig, J. C., Kwapiszeski, S. J., Sisante, J. F. V., Vidoni, E. D., Maletsky, R., & Poole, D. C. (2017). Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. Journal of Applied Physiology, 122(5), 1125–1133. https://doi.org/10.1152/japplphysiol.00995.2016

Article  PubMed  PubMed Central  Google Scholar 

Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539–546. https://doi.org/10.1016/j.tics.2004.10.003

Article  PubMed  Google Scholar 

Brisswalter, J., Collardeau, M., & René, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555–566. https://doi.org/10.2165/00007256-200232090-00002

Article  PubMed  Google Scholar 

Cerjanic, A., Holtrop, J. L., Ngo, G. C., Leback, B., Arnold, G., Moer, M. Van, LaBelle, G., Fessler, J. A., & Sutton, B. P. (2016). PowerGrid: A open source library for accelerated iterative magnetic resonance image reconstruction. Proceedings of the International Society for Magnetic Resonance in Medicine, p. 525.

Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453(250), 87–101. https://doi.org/10.1016/j.brainres.2012.02.068

Article  CAS  PubMed  Google Scholar 

Delgorio, P. L., Hiscox, L. V., Daugherty, A. M., Sanjana, F., McIlvain, G., Pohlig, R. T., McGarry, M. D., Martens, C. R., Schwarb, H., & Johnson, C. L. (2022). Structure-function dissociations of human hippocampal subfield stiffness and memory performance. The Journal of Neuroscience, 42(42), JN-RM-0592-22. https://doi.org/10.1523/jneurosci.0592-22.2022

Article  CAS  Google Scholar 

Dinoff, A., Herrmann, N., Swardfager, W., & Lanctôt, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. European Journal of Neuroscience, 46(1), 1635–1646. https://doi.org/10.1111/ejn.13603

Article  PubMed  Google Scholar 

Dishman, R. K., Berthoud, H. R., Booth, F. W., Cotman, C. W., Edgerton, V. R., Fleshner, M. R., Gandevia, S. C., Gomez-Pinilla, F., Greenwood, B. N., Hillman, C. H., Kramer, A. F., Levin, B. E., Moran, T. H., Russo-Neustadt, A. A., Salamone, J. D., Van Hoomissen, J. D., Wade, C. E., York, D. A., & Zigmond, M. J. (2006). Neurobiology of exercise. Obesity, 14(3), 345–356. https://doi.org/10.1038/oby.2006.46

Article  CAS  PubMed  Google Scholar 

Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4), 728–734. https://doi.org/10.1249/mss.0b013e31802f04c7

Article  CAS  PubMed  Google Scholar 

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

Article  PubMed  Google Scholar 

Guo, J., Bertalan, G., Meierhofer, D., Klein, C., Schreyer, S., Steiner, B., Wang, S., Vieira, R., Infante-duarte, C., Koch, S., Boehm-sturm, P., Braun, J., & Sack, I. (2019). Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomaterialia, 99, 433–442. https://doi.org/10.1016/j.actbio.2019.08.036

Article  CAS  PubMed  Google Scholar 

Hatt, A., Cheng, S., Tan, K., Sinkus, R., & Bilston, L. (2015). MR elastography can be used to measure brain stiffness changes as a result of altered cranial venous drainage during jugular compression. Extracranial Vascular, 36, 1971–1977.

CAS  Google Scholar 

Herthum, H., Shahryari, M., Tzschätzsch, H., Schrank, F., Warmuth, C., Görner, S., Hetzer, S., Neubauer, H., Pfeuffer, J., Braun, J., & Sack, I. (2021). Real-time multifrequency MR elastography of the human brain reveals rapid changes in viscoelasticity in response to the valsalva maneuver. Frontiers in Bioengineering and Biotechnology, 9(May), 1–12. https://doi.org/10.3389/fbioe.2021.666456

Article  Google Scholar 

Hetzer, S., Birr, P., Fehlner, A., Hirsch, S., Dittmann, F., Barnhill, E., Braun, J., & Sack, I. (2018). Perfusion alters stiffness of deep gray matter. Journal of Cerebral Blood Flow and Metabolism, 38(1), 116–125. https://doi.org/10.1177/0271678X17691530

Article  PubMed  Google Scholar 

Hetzer, S., Hirsch, S., Braun, J., Sack, I., & Weygandt, M. (2020). Viscoelasticity of striatal brain areas reflects variations in body mass index of lean to overweight male adults. Brain Imaging and Behavior, 14(6), 2477–2487. https://doi.org/10.1007/s11682-019-00200-w

Article  PubMed  Google Scholar 

Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. https://doi.org/10.1038/nrn2298

Hiscox, L. V., Johnson, C. L., Barnhill, E., Mcgarry, M. D. J., Huston, J., Van Beek, E. J. R., Starr, J. M., & Roberts, N. (2016). Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Physics in Medicine & Biology, 61, R401. https://doi.org/10.1088/0031-9155/61/24/R401

Article  Google Scholar 

Hiscox, L. V., Johnson, C. L., McGarry, M. D. J., Schwarb, H., van Beek, E. J. R., Roberts, N., & Starr, J. M. (2020). Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography. Brain Imaging and Behavior, 14(1), 175–185. https://doi.org/10.1007/s11682-018-9988-8

Article  PubMed  Google Scholar 

Hiscox, L. V., Schwarb, H., McGarry, M. D. J., & Johnson, C. L. (2021). Aging brain mechanics: progress and promise of magnetic resonance elastography. NeuroImage, 232, 117889. https://doi.org/10.1016/j.neuroimage.2021.117889

Article  PubMed  Google Scholar 

Hogervorst, E., Riedel, W., Jeukendrup, A., & Jolles, J. (1996). Cognitive performance after strenuous physical exercise. Perceptual and Motor Skills, 85(2), 479–488. https://doi.org/10.2466/pms.1996.83.2.479

Article  Google Scholar 

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. https://doi.org/10.1016/S1053-8119(02)91132-8

Article  PubMed  Google Scholar 

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J. J., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

Article  PubMed  Google Scholar 

Johnson, C. L., McGarry, M. D. J., Van Houten, E. E. W., Weaver, J. B., Paulsen, K. D., Sutton, B. P., & Georgiadis, J. G. (2013). Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction. Magnetic Resonance in Medicine, 70(2), 404–412. https://doi.org/10.1002/mrm.24473

Article  PubMed  Google Scholar 

Johnson, C. L., Schwarb, H., Horecka, K. M., McGarry, M. D. J. J., Hillman, C. H., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2018). Double dissociation of structure-function relationships in memory and fluid intelligence observed with magnetic resonance elastography. NeuroImage, 171(December 2017), 99–106. https://doi.org/10.1016/j.neuroimage.2018.01.007

Article  PubMed  Google Scholar 

Joris, P. J., Mensink, R. P., Adam, T. C., & Liu, T. T. (2018). Cerebral blood flow measurements in adults: a review on the effects of dietary factors and exercise. Nutrients, 10(5), 1–15. https://doi.org/10.3390/nu10050530

Article  CAS  Google Scholar 

Joyce, J., Graydon, J., McMorris, T., & Davranche, K. (2009). The time course effect of moderate intensity exercise on response execution and response inhibition. Brain and Cognition, 71(1), 14–19. https://doi.org/10.1016/j.bandc.2009.03.004

Article  PubMed  Google Scholar 

Kunstetter, A. C., Wanner, S. P., Madeira, L. G., Wilke, C. F., Rodrigues, L. O. C., & Lima, N. R. V. (2014). Association between the increase in brain temperature and physical performance at different exercise intensities and protocols in a temperate environment. Brazilian Journal of Medical and Biological Research, 47, 679–688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacIntosh, B. J., Crane, D. E., Sage, M. D., Rajab, A. S., Donahue, M. J., McIlroy, W. E., & Middleton, L. E. (2014). Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS One, 9(1). https://doi.org/10.1371/journal.pone.0085163

Manduca, A., Oliphant, T. E., Dresner, M. A., Mahowald, J. L., Kruse, S. A., Amromin, E., Felmlee, J. P., Greenleaf, J. F., & Ehman, R. L. (2001). Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Medical Image Analysis, 5(4), 237–254. https://doi.org/10.1016/S1361-8415(00)00039-6

Article  CAS  PubMed  Google Scholar 

McGarry, M. D. J., & Van Houten, E. E. (2008). Use of a Rayleigh damping model in elastography. Medical and Biological Engineering and Computing, 46(8), 759–766. https://doi.org/10.1007/s11517-008-0356-5

Article  PubMed  Google Scholar 

McGarry, M. D. J., Van Houten, E. E. W., Johnson, C. L., Georgiadis, J. G., Sutton, B. P., Weaver, J. B., & Paulsen, K. D. (2012). Multiresolution MR elastography using nonlinear inversion. Medical Physics, 39(10), 6388–6396. https://doi.org/10.1118/1.4754649

Article  CAS 

留言 (0)

沒有登入
gif