Fractional amplitude of low-frequency fluctuation alterations in patients with cervical spondylotic myelopathy: a resting-state fMRI study

Nagoshi N, Iwanami A, Isogai N, Ishikawa M, Nojiri K, Tsuji T, Daimon K, Takeuchi A, Tsuji O, Okada E, Fujita N, Yagi M, Watanabe K, Nakamura M, Matsumoto M, Ishii K, Yamane J (2019) Does posterior cervical decompression conducted by junior surgeons affect clinical outcomes in the treatment of cervical spondylotic myelopathy? Results from a multicenter study. Global Spine Journal 9(1):25–31

Article  PubMed  Google Scholar 

Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG (2015) Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine 40(12):E675-693

Article  PubMed  Google Scholar 

Toci GR, Canseco JA, Karamian BA, Chang M, Grasso G, Nicholson K, Pflug EM, Russo GS, Tarazona D, Kaye ID, Kurd MF, Hilibrand AS, Woods BI, Rihn JA, Anderson DG, Radcliff KE, Kepler CK, Vaccaro AR, Schroeder GD (2022) The impact of preoperative neurological symptom severity on postoperative outcomes in cervical spondylotic myelopathy. J Craniovertebral J Spine 13(1):94–100

Article  Google Scholar 

Wen CY, Cui JL, Liu HS, Mak KC, Cheung WY, Luk KD, Hu Y (2014) Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy? Radiology 270(1):197–204

Article  PubMed  Google Scholar 

Ellingson BM, Salamon N, Holly LT (2015) Advances in MR imaging for cervical spondylotic myelopathy. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 24 Suppl 2(Suppl 2):197-208.

Kim DH, Vaccaro AR, Henderson FC, Benzel EC (2003) Molecular biology of cervical myelopathy and spinal cord injury: role of oligodendrocyte apoptosis. Spine J: Official J North Ame Spine Soc 3(6):510–519

Article  Google Scholar 

Henderson FC, Geddes JF, Vaccaro AR, Woodard E, Berry KJ, Benzel EC (2005) Stretch-associated injury in cervical spondylotic myelopathy: new concept and review. Neurosurgery, 56(5):1101-1113; discussion 1101-1113.

He Z, Zang H, Zhu L, Huang K, Yi T, Zhang S, Cheng S (2019) An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury. Int J Nanomed 14:721–732

Article  Google Scholar 

Baptiste DC, Fehlings MG (2006) Pathophysiology of cervical myelopathy. Spine J: official J North Ame Spine Soc 6(6 Suppl):190s–197s

Article  Google Scholar 

Duetzmann S, Pilatus U, Seifert V, Marquardt G, Setzer M (2017) Ex vivo 1H MR spectroscopy and histology after experimental chronic spinal cord compression. J Spine Surg (Hong Kong) 3(2):176–183

Article  Google Scholar 

Bernabéu-Sanz Á, Mollá-Torró JV, López-Celada S, Moreno López P, Fernández-Jover E (2020) MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur Radiol 30(1):357–369

Article  PubMed  Google Scholar 

Karpova A, Arun R, Davis AM, Kulkarni AV, Massicotte EM, Mikulis DJ, Lubina ZI, Fehlings MG (2013) Predictors of surgical outcome in cervical spondylotic myelopathy. Spine 38(5):392–400

Article  PubMed  Google Scholar 

Asanza V, Peláez E, Loayza F, Lorente-Leyva LL, Peluffo-Ordóñez DH (2022) Identification of lower-limb motor tasks via brain-computer interfaces: a topical overview. Sensors (Basel, Switzerland), 22(5)

Guo L, Lv J, Huang YF, Hao DJ, Liu JJ (2019) Bioinformatics analyses of differentially expressed genes associated with spinal cord injury: a microarray-based analysis in a mouse model. Neural Regen Res 14(7):1262–1270

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sekine Y, Siegel CS, Sekine-Konno T, Cafferty WBJ, Strittmatter SM (2018) The nociceptin receptor inhibits axonal regeneration and recovery from spinal cord injury. Science signaling, 11(524)

Anderson MA, Squair JW, Gautier M, Hutson TH, Kathe C, Barraud Q, Bloch J, Courtine G (2022) Natural and targeted circuit reorganization after spinal cord injury. Nature Neurosci 25(12):1584–1596

Article  CAS  PubMed  Google Scholar 

da Silva FT, Browne RA, Pinto CB, Saleh Velez FG, do Egito ES, do Rêgo JT, da Silva MR, Dantas PM, Fregni F (2017) Transcranial direct current stimulation in individuals with spinal cord injury: assessment of autonomic nervous system activity. Restorative Neuro Neurosci, 35(2):159-169

Moxon KA, Oliviero A, Aguilar J, Foffani G (2014) Cortical reorganization after spinal cord injury: always for good? Neuroscience 283:78–94

Article  CAS  PubMed  Google Scholar 

Nishimura Y, Isa T (2009) Compensatory changes at the cerebral cortical level after spinal cord injury. Neurosci: rev J Bringing Neurobiol, Neuro Psych 15(5):436–444

Google Scholar 

Takamiya S, Iwasaki M, Yokohama T, Oura D, Niiya Y, Fujimura M (2023) The prediction of neurological prognosis for cervical spondylotic myelopathy using diffusion tensor imaging. Neurospine 20(1):248–254

Article  PubMed  PubMed Central  Google Scholar 

Singhal S, Saran S, Saxena S, Bhadoria AS, Grimm R (2023) Role of diffusion kurtosis imaging in evaluating microstructural changes in spinal cord of patients with cervical spondylosis. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 32(3):986-993

Zhou F, Huang M, Wu L, Tan Y, Guo J, Zhang Y, He L, Gong H (2018) Altered perfusion of the sensorimotor cortex in patients with cervical spondylotic myelopathy: an arterial spin labeling study. J Pain Res 11:181–190

Article  PubMed  PubMed Central  Google Scholar 

Chandra A, Dervenoulas G, Politis M (2019) Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neuro 266(6):1293–1302

Article  Google Scholar 

Chen X, Liu M, Wu Z, Cheng H (2020) Topological abnormalities of functional brain network in early-stage Parkinson’s disease patients with mild cognitive impairment. Front Neurosci 14:616872

Article  PubMed  PubMed Central  Google Scholar 

Puig J, Blasco G, Alberich-Bayarri A, Schlaug G, Deco G, Biarnes C, Navas-Martí M, Rivero M, Gich J, Figueras J, Torres C, Daunis IEP, Oramas-Requejo CL, Serena J, Stinear CM, Kuceyeski A, Soriano-Mas C, Thomalla G, Essig M, Figley CR, Menon B, Demchuk A, Nael K, Wintermark M, Liebeskind DS, Pedraza S (2018) Resting-state functional connectivity magnetic resonance imaging and outcome after acute stroke. Stroke 49(10):2353–2360

Article  PubMed  PubMed Central  Google Scholar 

Oughourlian TC, Wang C, Salamon N, Holly LT, Ellingson BM (2021) Sex-dependent cortical volume changes in patients with degenerative cervical myelopathy. J Clin Med, 10(17)

Kowalczyk I, Duggal N, Bartha R (2012) Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain: a journal of neurology, 135(Pt 2):461-468.

Zheng H, Zhou Q, Yang J, Lu Q, Qiu H, He C, Yan H (2023) Altered functional connectivity of the default mode and frontal control networks in patients with insomnia. CNS Neurosci Therap 29(8):2318–2326

Article  Google Scholar 

Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF, Zang YF (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141

Article  PubMed  PubMed Central  Google Scholar 

Guo Z, Liu X, Li J, Wei F, Hou H, Chen X, Li X, Chen W (2017) Fractional amplitude of low-frequency fluctuations is disrupted in Alzheimer’s disease with depression. Clinical Neurophys: official J Int Federation Clin Neurophys 128(7):1344–1349

Article  Google Scholar 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Reson Med 34(4):537–541

Article  CAS  Google Scholar 

Quan X, Hu S, Meng C, Cheng L, Lu Y, Xia Y, Li W, Liang H, Li M, Liang Z (2022) Frequency-specific changes of amplitude of low-frequency fluctuations in patients with acute basal ganglia ischemic stroke. Neural Plasticity 2022:4106131

Article  PubMed  PubMed Central  Google Scholar 

Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4):1083-1090; discussion 1097-1089.

Raichle ME (2015) The brain’s default mode network. Annual Rev Neurosci 38:433–447

Article  CAS  Google Scholar 

Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS (2021) The default mode network in cognition: a topographical perspective. Nature Rev Neurosci 22(8):503–513

Article  CAS  Google Scholar 

Wu X, Wang Y, Chang J, Zhu K, Zhang S, Li Y, Zuo J, Chen S, Jin W, Yan T, Yang K, Xu P, Song P, Wu Y, Qian Y, Shen C, Yu Y, Dong F (2023) Remodeling of the brain correlates with gait instability in cervical spondylotic myelopathy. Front Neurosci 17:1087945

Article  PubMed  PubMed Central  Google Scholar 

Zhao R, Su Q, Chen Z, Sun H, Liang M, Xue Y (2020) Neural correlates of cognitive dysfunctions in cervical spondylotic myelopathy patients: a resting-state fMRI study. Frontiers Neuro 11:596795

Article  Google Scholar 

Cao Y, Zhan Y, Du M, Zhao G, Liu Z, Zhou F, He L (2021) Disruption of human brain connectivity networks in patients with cervical spondylotic myelopathy. Quantitative Imag Med Surg 11(8):3418–3430

Article  Google Scholar 

Baarbé J, Vesia M, Brown MJN, Lizarraga KJ, Gunraj C, Jegatheeswaran G, Drummond NM, Rinchon C, Weissbach A, Saravanamuttu J, Chen R (2021) Interhemispheric interactions between the right angular gyrus and the left motor cortex: a transcranial magnetic stimulation study. J Neurophys 125(4):1236–1250

Article  Google Scholar 

Simpson GV, Weber DL, Dale CL, Pantazis D, Bressler SL, Leahy RM, Luks TL (2011) Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention. J Neurosci: official J Soc Neurosci 31(39):13880–13889

Article  CAS  Google Scholar 

Japee S, Holiday K, Satyshur MD, Mukai I, Ungerleider LG (2015) A role of right middle frontal gyrus in reorienting of attention: a case study. Front Syst Neurosci 9:23

Article  PubMed  PubMed Central  Google Scholar 

Qiao J, Tao S, Wang X, Shi J, Chen Y, Tian S, Yao Z, Lu Q (2020) Brain functional abnormalities in the amygdala subregions is associated with anxious depression. J Affective Disorders 276:653–659

Article  Google Scholar 

Yang L, Xiao A, Li QY, Zhong HF, Su T, Shi WQ, Ying P, Liang RB, Xu SH, Shao Y, Zhou Q (2022) Hyperintensities of middle frontal gyrus in patients with diabetic optic neuropathy: a dynamic amplitude of low-frequency fluctuation study. Aging 14(3):1336–1350

Article  PubMed  PubMed Central  Google Scholar 

Jiao X, Wang R, Ding X, Yan B, Lin Y, Liu Q, Wu Y, Zhou C (2022) LncRNA-84277 is involved in chronic pain-related depressive behaviors through miR-128-3p/SIRT1 axis in central amygdala. Front Mole Neurosci 15:920216

Article  CAS  Google Scholar 

Dai H, Morelli JN, Ai F, Yin D, Hu C, Xu D, Li Y (2013) Resting-state functional MRI: functional connectivity analysis of the visual cortex in primary open-angle glaucoma patients. Human Brain Mapping 34(10):2455–2463

Article  PubMed  Google Scholar 

Zhang L, Wang H, Luan S, Yang S, Wang Z, Wang J, Zhao H (2017) Altered volume and functional connectivity of the habenula in schizophrenia. Front Human Neurosci 11:636

Article 

留言 (0)

沒有登入
gif