Advanced nanomaterials for imaging of eye diseases

M.J. Burton, J. Ramke, A. P. Marques, R. R. A. Bourne, N. Congdon, I. Jones, B.A.M. Ah Tong, S. Arunga, D. Bachani, C. Bascaran, A. Bastawrous, K. Blanchet, T. Braithwaite, J. C. Buchan, J. Cairns, A. Cama, M. Chagunda, C. Chuluunkhuu, A. Cooper, J. Crofts-Lawrence, … H.B. Faal. The Lancet Global Health Commission on global eye health: vision beyond 2020. Maori Health Research Review (2021) 9 (2021) E489-E551. https://doi.org/10.1016/S2214-109X(20)30488-5

P. Mitchell, G. Liew, B. Gopinath, T.Y. Wong. Age-related macular degeneration. The Lancet 392 (2018) 1147-1159. https://doi.org/10.1016/S0140-6736(22)02609-5

L.S. Lim, P. Mitchell, J.M. Seddon, F.G. Holz, T.Y. Wong. Age-related macular degeneration. The Lancet 379 (2012) 1728-1738. https://doi.org/https://doi.org/10.1016/S0140-6736(12)60282-7.

R. Guymer, Z. Wu. Age‐related macular degeneration (AMD): More than meets the eye. The role of multimodal imaging in today's management of AMD—A review. Clinical & Experimental Ophthalmology 48 (2020) 983-995. https://doi.org/10.1111/ceo.13837

G.J. Jaffe, U. Chakravarthy, K.B. Freund, R.H. Guymer, F.G. Holz, S. Liakopoulos, J.M. Monés, P.J. Rosenfeld, S.R. Sadda, D. Sarraf. Imaging features associated with progression to geographic atrophy in age-related macular degeneration: classification of atrophy meeting report 5. Ophthalmology Retina 5 (2021) 855-867. https://doi.org/10.1016/j.oret.2020.12.009

N. Cheung, P. Mitchell, T.Y. Wong. Diabetic retinopathy. The Lancet 376 (2010) 124-136. https://doi.org/https://doi.org/10.1016/S0140-6736(09)62124-3.

S.K. Verbakel, R.A. van Huet, C.J. Boon, A.I. den Hollander, R.W. Collin, C.C. Klaver, C.B. Hoyng, R. Roepman, B.J. Klevering. Non-syndromic retinitis pigmentosa. Progress in Retinal and Eye Research 66 (2018) 157-186. https://doi.org/10.1016/j.preteyeres.2018.03.005

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K.K. Shung, C.A. Puliafito, H.F. Zhang. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Optics Express 18 (2010) 3967-3972. https://doi.org/10.1364/OE.18.003967.

N. Eter. Molecular imaging in the eye. British Journal of Ophthalmology 94 (2010) 1420-1426. https://doi.org/10.1136/bjo.2009.158105

A. de La Zerda, Y.M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B.T. Khuri-Yakub, M.S. Blumenkranz, D.M. Moshfeghi, S.S. Gambhir. Photoacoustic ocular imaging. Optics Letters 35 (2010) 270-272. https://doi.org/10.1364/OL.35.000270

S. Jeon, H.B. Song, J. Kim, B.J. Lee, R. Managuli, J.H. Kim, J.H. Kim, C. Kim. In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach. Scientific Reports 7 (2017) 4318. https://doi.org/10.1038/s41598-017-04334-z

W. Zhang, Y. Li, Y. Yu, K. Derouin, Y. Qin, V.P. Nguyen, X. Xia, X. Wang, Y.M. Paulus. Simultaneous photoacoustic microscopy, spectral-domain optical coherence tomography, and fluorescein microscopy multi-modality retinal imaging. Photoacoustics 20 (2020) 100194. https://doi.org/10.1016/j.pacs.2020.100194

W. Zhang, Y. Li, V.P. Nguyen, Z. Huang, Z. Liu, X. Wang, Y.M. Paulus. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization. Light: Science & Applications 7 (2018) 103. https://doi.org/10.1038/s41377-018-0093-y

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, H.F. Zhang. Multimodal photoacoustic ophthalmoscopy in mouse. Journal of Biophotonics 6 (2013) 505-512. https://doi.org/10.1002/jbio.201200061

V.P. Nguyen, Y. Li, M. Aaberg, W. Zhang, X. Wang, Y.M. Paulus. In vivo 3D imaging of retinal neovascularization using multimodal photoacoustic microscopy and optical coherence tomography imaging. Journal of imaging 4 (2018) 150. https://doi.org/10.3390/jimaging4120150

C. Tian, W. Zhang, A. Mordovanakis, X. Wang, Y.M. Paulus. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Optics Express 25 (2017) 15947-15955. https://doi.org/10.1364/OE.25.015947

S. Waldstein, H. Faatz, M. Szimacsek, A. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. Gerendas, U. Schmidt-Erfurth. Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography. Eye 29 (2015) 409-415. https://doi.org/10.1038/eye.2014.319

A. Wang, W. Qi, T. Gao, X. Tang. Molecular contrast optical coherence tomography and its applications in medicine. International Journal of Molecular Sciences 23 (2022) 3038. https://doi.org/10.3390/ijms23063038

R.F. Spaide, J.G. Fujimoto, N.K. Waheed, S.R. Sadda, G. Staurenghi. Optical coherence tomography angiography. Progress in Retinal and Eye Research 64 (2018) 1-55. https://doi.org/10.1016/j.preteyeres.2017.11.003

H.L. Rao, Z.S. Pradhan, M.H. Suh, S. Moghimi, K. Mansouri, R.N. Weinreb. Optical coherence tomography angiography in glaucoma. Journal of Glaucoma 29 (2020) 312. https://doi.org/10.1097/ijg.0000000000001463

S.H. Tsang, T. Sharma. Fluorescein angiography. Atlas of Inherited Retinal Diseases (2018) 7-10. https://doi.org/10.1007/978-3-319-95046-4_2

A. Cavallerano. Ophthalmic fluorescein angiography. Optometry Clinics: the official publication of the Prentice Society 5 (1996) 1-23.

S.o.U.N.W. Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. American Journal of Ophthalmology 140 (2005) 509-516. https://doi.org/10.1016/j.ajo.2005.03.057

V.L. Dzurinko, A.S. Gurwood, J.R. Price. Intravenous and indocyanine green angiography. Optometry-Journal of the American Optometric Association 75 (2004) 743-755. https://doi.org/10.1016/S1529-1839(04)70234-1

A. Ozkaya, C. Alagoz, R. Garip, Z. Alkin, I. Perente, A. Yazici, M. Taskapili. The role of indocyanine green angiography imaging in further differential diagnosis of patients with nAMD who are morphologically poor responders to ranibizumab in a real-life setting. Eye 30 (2016) 958-965. https://doi.org/10.1038/eye.2016.71

J. Weber, P.C. Beard, S.E. Bohndiek. Contrast agents for molecular photoacoustic imaging. Nature Methods 13 (2016) 639-650. https://doi.org/10.1038/nmeth.3929

Q. Fu, R. Zhu, J. Song, H. Yang, X. Chen. Photoacoustic imaging: contrast agents and their biomedical applications. Advanced Materials 31 (2019) 1805875. https://doi.org/10.1002/adma.201805875

M. Landsman, G. Kwant, G. Mook, W. Zijlstra. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of Applied Physiology 40 (1976) 575-583. https://doi.org/10.1152/jappl.1976.40.4.575

X. Liang, Z. Deng, L. Jing, X. Li, Z. Dai, C. Li, M. Huang. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging. Chemical Communications 49 (2013) 11029-11031. https://doi.org/10.1039/C3CC42510J

T. Kim, J.E. Lemaster, F. Chen, J. Li, J.V. Jokerst. Photoacoustic imaging of human mesenchymal stem cells labeled with Prussian blue–poly (l-lysine) nanocomplexes. ACS Nano 11 (2017) 9022-9032. https://doi.org/10.1021/acsnano.7b03519

C. Zhang, D. Jiang, B. Huang, C. Wang, L. Zhao, X. Xie, Z. Zhang, K. Wang, J. Tian, Y. Luo. Methylene blue–based near-infrared fluorescence imaging for breast cancer visualization in resected human tissues. Technology in Cancer Research & Treatment 18 (2019) 1533033819894331. https://doi.org/10.1177/1533033819894331

D.O. Baddam, S.D. Ragi, S.H. Tsang, W.K. Ngo, Ophthalmic Fluorescein Angiography, in Retinitis Pigmentosa, J. M. Walker, Ed., Humana. New York, USA, 2022, p. 153-160. https://doi.org/10.1007/978-1-0716-2651-1_15

V.P. Nguyen, W. Qian, J. Zhe, J. Henry, M. Wang, B. Liu, W. Zhang, X. Wang, Y.M. Paulus. Renal Clearable Ultraminiature Chain‐like Gold Nanoparticle Clusters for Multimodal Molecular Imaging of Choroidal Neovascularization. Advanced Materials (2023) 2302069. https://doi.org/10.1002/adma.202302069

V.P. Nguyen, W. Fan, T. Zhu, W. Qian, Y. Li, B. Liu, W. Zhang, J. Henry, S. Yuan, X. Wang. Long-term, noninvasive in vivo tracking of progenitor cells using multimodality photoacoustic, optical coherence tomography, and fluorescence imaging. ACS Nano 15 (2021) 13289-13306. https://doi.org/10.1021/acsnano.1c03035

V.P. Nguyen, Y. Li, J. Henry, W. Zhang, M. Aaberg, S. Jones, T. Qian, X. Wang, Y.M. Paulus. Plasmonic gold nanostar-enhanced multimodal photoacoustic microscopy and optical coherence tomography molecular imaging to evaluate choroidal neovascularization. ACS Sensors 5 (2020) 3070-3081. https://doi.org/10.1021/acssensors.0c00908

V.P. Nguyen, Y. Li, J. Henry, W. Zhang, X. Wang, Y.M. Paulus. Gold nanorod enhanced photoacoustic microscopy and optical coherence tomography of choroidal neovascularization. ACS Applied Materials & Interfaces 13 (2021) 40214-40228. https://doi.org/10.1021/acsami.1c03504

V.P. Nguyen, Y. Li, W. Qian, B. Liu, C. Tian, W. Zhang, Z. Huang, A. Ponduri, M. Tarnowski, X. Wang. Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo. Scientific Reports 9 (2019) 5945. https://doi.org/10.1038/s41598-019-42324-5

V.P. Nguyen, W. Qian, Y. Li, B. Liu, M. Aaberg, J. Henry, W. Zhang, X. Wang, Y.M. Paulus. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nature Communications 12 (2021) 1-14. https://doi.org/10.1038/s41467-020-20276-z

L.V. Wang. Multiscale photoacoustic microscopy and computed tomography. Nature Photonics 3 (2009) 503-509. https://doi.org/10.1038/nphoton.2009.157

A.B.E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, M. Olivo. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 16 (2019) 100144. https://doi.org/10.1016/j.pacs.2019.100144

L. Lin, L.V. Wang. The emerging role of photoacoustic imaging in clinical oncology. Nature Reviews Clinical Oncology 19 (2022) 365-384. https://doi.org/10.1038/s41571-022-00615-3

D.R. Anijeet, Y. Zheng, A. Tey, M. Hodson, H. Sueke, S.B. Kaye. Imaging and evaluation of corneal vascularization using fluorescein and indocyanine green angiography. Investigative Ophthalmology and Visual Science 53 (2012) 650-658. https://doi.org/10.1167/iovs.11-8014

J. Zheng, X. Cheng, H. Zhang, X. Bai, R. Ai, L. Shao, J. Wang. Gold nanorods: the most versatile plasmonic nanoparticles. Chemical Reviews 121 (2021) 13342-13453. https://doi.org/10.1021/acs.chemrev.1c00422

A. Woźniak, A. Malankowska, G. Nowaczyk, B.F. Grześkowiak, K. Tuśnio, R. Słomski, A. Zaleska-Medynska, S. Jurga. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine 28 (2017) 1-11. https://doi.org/10.1007/s10856-017-5902-y

Y.S. Chen, Y. Zhao, S.J. Yoon, S.S. Gambhir, S. Emelianov. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nature Nanotechnology 14 (2019) 465-472. https://doi.org/10.1038/s41565-019-0392-3

S.M. Mousavi, M. Zarei, S.A. Hashemi, S. Ramakrishna, W.-H. Chiang, C.W. Lai, A. Gholami. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metabolism Reviews 52 (2020) 299-318. https://doi.org/10.1080/03602532.2020.1734021

R. Singh, J.C. Batoki, M. Ali, V.L. Bonilha, B. Anand-Apte. Inhibition of choroidal neovascularization by systemic delivery of gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 28 (2020) 102205. https://doi.org/10.1016/j.nano.2020.102205

W.C. Kreisl, M.-J. Kim, J.M. Coughlin, I.D. Henter, D.R. Owen, R.B. Innis. PET imaging of neuroinflammation in neurological disorders. The Lancet Neurology 19 (2020) 940-950. https://doi.org/10.1016/s1474-4422(20)30346-x

A. Rahmim, M.A. Lodge, N.A. Karakatsanis, V.Y. Panin, Y. Zhou, A. McMillan, S. Cho, H. Zaidi, M.E. Casey, R.L. Wahl. Dynamic whole-body PET imaging: principles, potentials and applications. European Journal of Nuclear Medicine and Molecular Imaging 46 (2019) 501-518. https://doi.org/10.1007/s00259-018-4153-6

V.O. Puntmann, M.L. Carerj, I. Wieters, M. Fahim, C. Arendt, J. Hoffmann, A. Shchendrygina, F. Escher, M. Vasa-Nicotera, A.M. Zeiher. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiology 5 (2020) 1265-1273. https://doi.org/10.1001/jamacardio.2020.3557

M.C. Florkow, K. Willemsen, V.V. Mascarenhas, E.H. Oei, M. van Stralen, P.R. Seevinck. Magnetic resonance imaging versus computed tomography for Three‐Dimensional bone imaging of musculoskeletal pathologies: a review. Journal of Magnetic Resonance Imaging 56 (2022) 11-34. https://doi.org/10.1002/jmri.28067

O. Israel, O. Pellet, L. Biassoni, D. De Palma, E. Estrada-Lobato, G. Gnanasegaran, T. Kuwert, C. La Fougère, G. Mariani, S. Massalha. Two decades of SPECT/CT–the coming of age of a technology: an updated review of literature evidence. European Journal of Nuclear Medicine and Molecular Imaging 46 (2019) 1990-2012. https://doi.org/10.1007/s00259-019-04404-6

T.Y. Lee, T.G. Purdie, E. Stewart. CT imaging of angiogenesis. The Quarterly Journal of Nuclear Medicine 47 (2003) 171-187.

R. Popovtzer, A. Agrawal, N.A. Kotov, A. Popovtzer, J. Balter, T.E. Carey, R. Kopelman. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Letters 8 (2008) 4593-4596. https://doi.org/10.1021/nl8029114

J.A. Noble, D. Boukerroui. Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging 25 (2006) 987-1010. https://doi.org/10.1109/TMI.2006.877092.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto. Optical Coherence Tomography. Science 254 (1991) 1178-1181. https://doi.org/doi:10.1126/science.1957169.

S. Aumann, S. Donner, J. Fischer, F. Müller. Optical coherence tomography (OCT): principle and technical realization in High Resolution Imaging in Microscopy and Ophthalmology, J. F. Bille, Ed., Springer, Cham, Switzerland, 2019, p. 59-85. https://doi.org/10.1007/978-3-030-16638-0_3

J.G. Fujimoto, C. Pitris, S.A. Boppart, M.E. Brezinski. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2 (2000) 9-25. https://doi.org/10.1038/sj.neo.7900071

G. Barteselli, D.-U. Bartsch, R.N. Weinreb, N. Camacho, J.T. Nezgoda, A.H. Marvasti, W.R. Freeman. Real-time full-depth visualization of posterior ocular structures: comparison between full depth imaging spectral domain OCT and swept source OCT. Retina 36 (2016) 1153. https://doi.org/10.1097/IAE.0000000000000842

J.F. De Boer, R. Leitgeb, M. Wojtkowski. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT. Biomedical Optics Express 8 (2017) 3248-3280. https://doi.org/10.1364/boe.8.003248

T. Pfeiffer, M. Göb, W. Draxinger, S. Karpf, J.P. Kolb, R. Huber. Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging. Biomedical Optics Express 11 (2020) 6799-6811. https://doi.org/10.1364/BOE.402477.

S.W. Lee, H.W. Jeong, B.M. Kim, Y.C. Ahn, W. Jung, Z. Chen. Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm. Journal o fKorean Physical Society. 55 (2009) 2354-2360. https://doi.org/10.3938/jkps.55.2354.

S. Alexandrov, H. Subhash, M. Leahy. Nanosensitive optical coherence tomography for the study of changes in static and dynamic structures. Quantum Electronics 44 (2014) 657. https://doi.org/10.1070/QE2014v044n07ABEH015487

C. Lal, S. Alexandrov, S. Rani, Y. Zhou, T. Ritter, M. Leahy. Nanosensitive optical coherence tomography to assess wound healing within the cornea. Biomedical Optics Express 11 (2020) 3407-3422. https://doi.org/10.1364/BOE.389342

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, C. Radzewicz. Ophthalmic imaging by spectral optical coherence tomography. American Journal of Ophthalmology 138 (2004) 412-419. https://doi.org/10.1016/j.ajo.2004.04.049

W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kärtner, J.S. Schuman, J.G. Fujimoto. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine 7 (2001) 502-507. https://doi.org/10.1038/86589

G. Song, K.K. Chu, S. Kim, M. Crose, B. Cox, E.T. Jelly, J.N. Ulrich, A. Wax. First clinical application of low-cost OCT. Translational Vision Science & Technology 8 (2019) 61-61. https://doi.org/10.1167/tvst.8.3.61

R. Chopra, S.K. Wagner, P.A. Keane. Optical coherence tomography in the 2020s—outside the eye clinic. Eye 35 (2021) 236-243. https://doi.org/10.1038/s41433-020-01263-6

M.C. Pierce, J. Strasswimmer, B.H. Park, B. Cense, J.F. de Boer. Advances in optical coherence tomography imaging for dermatology. Journal of Investigative Dermatology 123 (2004) 458-463. https://doi.org/10.1111/j.0022-202X.2004.23404.x

B. Wan, C. Ganier, X. Du‐Harpur, N. Harun, F. Watt, R. Patalay, M. Lynch. Applications and future directions for optical coherence tomography in dermatology. British Journal of Dermatology 184 (2021) 1014-1022. https://doi.org/10.1111/bjd.19553

M. Terashima, H. Kaneda, T. Suzuki. The role of optical coherence tomography in coronary intervention. The Korean Journal of Internal Medicine 27 (2012) 1-12. https://doi.org/10.3904 %2Fkjim.2012.27.1.1

H. Sinclair, C. Bourantas, A. Bagnall, G.S. Mintz, V. Kunadian. OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC: Cardiovascular Imaging 8 (2015) 198-209. https://doi.org/10.1016/j.jcmg.2014.12.005

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito. Optical coherence tomography. Science 254 (1991) 1178-1181. https://doi.org/10.1126/science.1957169

J. Doustar, T. Torbati, K.L. Black, Y. Koronyo, M. Koronyo-Hamaoui. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Frontiers in Neurology 8 (2017) 701. https://doi.org/10.3389/fneur.2017.00701

F.T. Nguyen, A.M. Zysk, E.J. Chaney, S.G. Adie, J.G. Kotynek, U.J. Oliphant, F.J. Bellafiore, K.M. Rowland, P.A. Johnson, S.A. Boppart. Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer. IEEE Engineering in Medicine and Biology Magazine 29 (2010) 63-70. https://doi.org/10.1109/MEMB.2009.935722

R.A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S.L. Jacques, D.D. Sampson. Parametric imaging of cancer with optical coherence tomography. Journal of Biomedical Optics 15 (2010) 046029-046029-046024. https://doi.org/10.1117/1.3479931

B.E. Bouma, J.F. de Boer, D. Huang, I.-K. Jang, T. Yonetsu, C.L. Leggett, R. Leitgeb, D.D. Sampson, M. Suter, B.J. Vakoc. Optical coherence tomography. Nature Reviews Methods Primers 2 (2022) 79. https://doi.org/10.1038/s43586-022-00162-2

R. Murthy, S. Haji, K. Sambhav, S. Grover, K. Chalam. Clinical applications of spectral domain optical coherence tomography in retinal diseases. Biomedical Journal 39 (2016) 107-120. https://doi.org/10.1016/j.bj.2016.04.003

A. Al-Mujaini, U.K. Wali, S. Azeem. Optical coherence tomography: clinical applications in medical practice. Oman Medical Journal 28 (2013) 86. https://doi.org/10.5001/omj.2013.24

A.B.E. Attia, G. Balasundaram, M. Moothanchery, U.S. Dinish, R. Bi, V. Ntziachristos, M. Olivo. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 16 (2019) 100144. https://doi.org/10.1016/j.pacs.2019.100144.

S. Jeon, J. Kim, D. Lee, J.W. Baik, C. Kim. Review on practical photoacoustic microscopy. Photoacoustics 15 (2019) 100141. https://doi.org/10.1016/j.pacs.2019.100141

V.P. Nguyen, Y. Li, J. Henry, W. Zhang, X. Wang, Y.M. Paulus. High resolution multimodal photoacoustic microscopy and optical coherence tomography visualization of choroidal vascular occlusion. International Journal of Molecular Sciences 21 (2020) 6508. https://doi.org/10.1038/s41598-019-47062-2

L.V. Wang, S. Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335 (2012) 1458-1462. https://doi.org/10.1126 %2Fscience.1216210

J. Kim, J.Y. Kim, S. Jeon, J.W. Baik, S.H. Cho, C. Kim. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light: Science & Applications 8 (2019) 103. https://doi.org/10.1038/s41377-019-0220-4

S.W. Cho, S.M. Park, B. Park, T.G. Lee, B.-M. Kim, C. Kim, J. Kim, S.-W. Lee, C.-S. Kim. High-speed photoacoustic microscopy: a review dedicated on light sources. Photoacoustics 24 (2021) 100291. https://doi.org/10.1016/j.pacs.2021.100291

J. Yao, L.V. Wang. Sensitivity of photoacoustic microscopy. Photoacoustics 2 (2014) 87-101. https://doi.org/10.1016/j.pacs.2014.04.002

J.L. Su, B. Wang, K.E. Wilson, C.L. Bayer, Y.-S. Chen, S. Kim, K.A. Homan, S.Y. Emelianov. Advances in clinical and biomedical applications of photoacoustic imaging. Expert Opinion on Medical Diagnostics 4 (2010) 497-510. https://doi.org/10.1517/17530059.2010.529127

W. Zhang, Y. Li, V.P. Nguyen, K. Derouin, X. Xia, Y.M. Paulus, X. Wang. Ultralow energy photoacoustic microscopy for ocular imaging in vivo. Journal of Biomedical Optics 25 (2020) 066003-066003. https://doi.org/10.1117/1.jbo.25.6.066003

Y. Li, W. Zhang, V.P. Nguyen, N.W. Khan, X. Xia, X. Wang, Y.M. Paulus. Retinal safety evaluation of photoacoustic microscopy. Experimental Eye Research 202 (2021) 108368. https://doi.org/10.1016/j.exer.2020.108368

R. Li, L. Lan, Y. Xia, P. Wang, L.K. Han, G.L. Dunnington, S. Obeng‐Gyasi, G.E. Sandusky, J.A. Medley, S.T. Crook. High‐speed intra‐operative assessment of breast tumour margins by multimodal ultrasound and photoacoustic tomography. Medical Devices & Sensors 1 (2018) e10018. https://doi.org/10.1002/mds3.10018

T.T. Wong, R. Zhang, P. Hai, C. Zhang, M.A. Pleitez, R.L. Aft, D.V. Novack, L.V. Wang. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Science Advances 3 (2017) e1602168. https://doi.org/10.1126/sciadv.1602168

W. Qin, Q. Gan, L. Yang, Y. Wang, W. Qi, B. Ke, L. Xi. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy. Neuroimage 238 (2021) 118260. https://doi.org/10.1016/j.neuroimage.2021.118260

S. Hu, K. Maslov, V. Tsytsarev, L.V. Wang. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. Journal of biomedical Optics 14 (2009) 040503-040503-040503. https://doi.org/10.1117/1.3194136

A. Breathnach, E. Concannon, J.J. Dorairaj, S. Shaharan, J. McGrath, J. Jose, J.L. Kelly, M.J. Leahy. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging. Journal of Medical Imaging 5 (2018) 015004-015004. https://doi.org/10.1117/1.jmi.5.1.015004

S.N. Thakur, D. Pandey, S.N. Rai, Applications of photoacoustic spectroscopy and imaging in gastroenterology. Photoacoustic and Photothermal Spectroscopy (2023) 571-586. https://doi.org/10.1016/B978-0-323-91732-2.00001-X

V.P. Nguyen, Y. Li, W. Zhang, X. Wang, Y.M. Paulus. High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits. Scientific Reports 9 (2019) 10560. https://doi.org/10.1038/s41598-019-47062-2.

W. Liu, K.M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, H.F. Zhang. In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy. Photoacoustics 2 (2014) 81-86. https://doi.org/10.1016/j.pacs.2014.04.003

M. Xiao, C. Dai, L. Li, C. Zhou, F. Wang. Evaluation of retinal pigment epithelium and choroidal neovascularization in rats using laser-scanning optical-resolution photoacoustic microscopy. Ophthalmic Research 63 (2020) 271-283. https://doi.org/10.1159/000502800

V.P. Nguyen, J. Hu, J. Zhe, E.Y. Chen, D. Yang, Y.M. Paulus. Multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging of USH2A knockout rabbits. Scientific Reports 13 (2023) 22071. https://doi.org/10.1038/s41598-023-48872-1

M. Bondu, M. Marques, P.M. Moselund, G. Lall, A. Bradu, A. Podoleanu. Multispectral photoacoustic microscopy and optical coherence tomography using a single supercontinuum source. Photoacoustics 9 (2018) 21-30. https://doi.org/10.1016/j.pacs.2017.11.002

V.P. Nguyen, J. Henry, J. Zhe, Q. Kieu, W. Qian, Y. Fu, X. Wang, Y.M. Paulus. Age differential response to bevacizumab therapy in choroidal neovascularization in rabbits. Experimental Eye Research 223 (2022) 109215. https://doi.org/10.1016/j.exer.2022.109215

V.P. Nguyen, J. Folz, Y. Li, J. Henry, W. Zhang, T. Qian, X. Wang, Y.M. Paulus. Indocyanine green-enhanced multimodal photoacoustic microscopy and optical coherence tomography molecular imaging of choroidal neovascularization. Journal of Biophotonics 14 (2021) e202000458. https://doi.org/10.1002/jbio.202000458.

Z. Hosseinaee, A. Nima, N. Pellegrino, L. Khalili, L. Mukhangaliyeva, P. Haji Reza. Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography. Scientific Reports 11 (2021) 11466. https://doi.org/10.1038/s41598-021-90776-5.

X. Dai, L. Xi, C. Duan, H. Yang, H. Xie, H. Jiang. Miniature probe integrating optical-resolution photoacoustic microscopy, optical coherence tomography, and ultrasound imaging: proof-of-concept. Optics Letters 40 (2015) 2921-2924. https://doi.org/10.1364/OL.40.002921.

M. Liu, Z. Chen, B. Zabihian, C. Sinz, E. Zhang, P.C. Beard, L. Ginner, E. Hoover, M.P. Minneman, R.A. Leitgeb, H. Kittler, W. Drexler. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging. Biomedical Optics Express 7 (2016) 3390-3402. https://doi.org/10.1364/BOE.7.003390.

Y. Liu, M. Xu, Y. Dai, Q. Zhao, L. Zhu, X. Guan, G. Li, S. Yang, Z. Yuan. NIR-II dual-modal optical coherence tomography and photoacoustic imaging-guided dose-control cancer chemotherapy. ACS Applied Polymer Materials 2 (2020) 1964-1973. https://doi.org/10.1021/acsapm.0c00155

M. Minoshima, J. Kikuta, Y. Omori, S. Seno, R. Suehara, H. Maeda, H. Matsuda, M. Ishii, K. Kikuchi. In Vivo Multicolor Imaging with Fluorescent Probes Revealed the Dynamics and Function of Osteoclast Proton Pumps. ACS Central Science 5 (2019) 1059-1066. https://doi.org/10.1021/acscentsci.9b00220.

V. Crosignani, A. Dvornikov, J.S. Aguilar, C. Stringari, R. Edwards, W.W. Mantulin, E. Gratton. Deep tissue fluorescence imaging and in vivo biological applications. Journal of Biomedical Optics 17 (2012) 116023. https://doi.org/10.1117/1.jbo.17.11.116023.

B. Huang, M. Bates, X. Zhuang. Super-Resolution Fluorescence Microscopy. Annual Review of Biochemistry 78 (2009) 993-1016. https://doi.org/10.1146/annurev.biochem.77.061906.092014.

C.A. Combs, H. Shroff. Fluorescence Microscopy: A Concise Guide to Current Imaging Methods. Current Protocols in Neuroscience 79 (2017) 2.1.1-2.1.25. https://doi.org/https://doi.org/10.1002/cpns.29.

M. Choi, S.J. Kwok, S.H. Yun. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology 30 (2015) 40-49. https://doi.org/10.1152/physiol.00019.2014

S. Hu. Emerging concepts in functional and molecular photoacoustic imaging. Current Opinion in Chemical Biology 33 (2016) 25-31. https://doi.org/https://doi.org/10.1016/j.cbpa.2016.04.003.

Z. Chen, S. Yang, D. Xing. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging. Optics Letters 41 (2016) 1636-1639. https://doi.org/10.1364/OL.41.001636

C. Tian, W. Zhang, V.P. Nguyen, Z. Huang, X. Wang, Y.M. Paulus, Photons Plus Ultrasound: Imaging and Sensing 2018, (2018) 564-570.

A. Dadkhah, S. Jiao. Optical coherence tomography-guided dynamic focusing for combined optical and mechanical scanning multimodal photoacoustic microscopy. Journal of Biomedical Optics 24 (2019) 121906-121906. https://doi.org/10.1117/1.JBO.24.12.121906

J. Park, B. Park, T.Y. Kim, S. Jung, W.J. Choi, J. Ahn, D.H. Yoon, J. Kim, S. Jeon, D. Lee, U. Yong, J. Jang, W.J. Kim, H.K. Kim, U. Jeong, H.H. Kim, C. Kim. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proceedings of the National Academy of Sciences 118 (2021) e1920879118. https://doi.org/doi:10.1073/pnas.1920879118.

W. Zhang, Y. Shi, S. Abd Shukor, A. Vijayakumaran, S. Vlatakis, M. Wright, M. Thanou. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. Nanoscale 14 (2022) 2943-2965. https://doi.org/10.1039/D1NR07882H

X. Liu, M. Atwater, J. Wang, Q. Huo. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B 58 (2007) 3-7. https://doi.org/10.1016/j.colsurfb.2006.08.005

K.S. Lee, M.A. El-Sayed. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. The Journal of Physical Chemistry B 109 (2005) 20331-20338. https://doi.org/10.1021/jp054385p

E.C. Cho, C. Kim, F. Zhou, C.M. Cobley, K.H. Song, J. Chen, Z.-Y. Li, L.V. Wang, Y. Xia. Measuring the optical absorption cross sections of Au− Ag nanocages and au nanorods by photoacoustic imaging. The Journal of Physical Chemistry C 113 (2009) 9023-9028. https://doi.org/10.1021/jp903343p

C.S. Ah, Y.J. Yun, H.J. Park, W.-J. Kim, D.H. Ha, W.S. Yun. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chemistry of Materials 17 (2005) 5558-5561. https://doi.org/10.1021/cm051225h

J.S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, T.G. Lee. Stacked gold nanodisks for bimodal photoacoustic and optical coherence imaging. ACS Nano 11 (2017) 6225-6232. https://doi.org/10.1021/acsnano.7b02337

M.P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A.M. Elliot, J. Stafford, T. Olson, J.Z. Zhang, C. Li. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Molecular Cancer Therapeutics 7 (2008) 1730-1739. https://doi.org/10.1158/1535-7163.MCT-08-0016

P. Si, E. Yuan, O. Liba, Y. Winetraub, S. Yousefi, E.D. SoRelle, D.W. Yecies, R. Dutta, A. de la Zerda. Gold nanoprisms as optical coherence tomography contrast agents in the second near-infrared window for enhanced angiography in live animals. ACS Nano 12 (2018) 11986-11994. https://doi.org/10.1021/acsnano.8b03862

J. Chen, F. Saeki, B.J. Wiley, H. Cang, M.J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M.B. Kimmey, X. Li. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano letters 5 (2005) 473-477. https://doi.org/10.1021/nl047950t

C. Kim, H.-M. Song, X. Cai, J. Yao, A. Wei, L.V. Wang. In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. Journal of Materials Chemistry 21 (2011) 2841-2844. https://doi.org/10.1039/C0JM04194G

E. Hao, R.C. Bailey, G.C. Schatz, J.T. Hupp, S. Li. Synthesis and optical properties of “branched” gold nanocrystals. Nano letters 4 (2004) 327-330. https://doi.org/10.1021/nl0351542

P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angewandte Chemie 125 (2013) 14208-14214. https://doi.org/10.1002/anie.201308986

P. Si, S. Shevidi, E. Yuan, K. Yuan, Z. Lautman, S.S. Jeffrey, G.W. Sledge, A. de la Zerda. Gold nanobipyramids as second near infrared optical coherence tomography contrast agents for in vivo multiplexing studies. Nano Letters 20 (2019) 101-108. https://doi.org/10.1021/acs.nanolett.9b03344

W. Li, X. Chen. Gold nanoparticles for photoacoustic imaging. Nanomedicine: Nanotechnology, Biology, and Medicine 10 (2015) 299-320. https://doi.org/10.2217/nnm.14.169

E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed. The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews 41 (2012) 2740-2779. https://doi.org/10.1039/C1CS15237H

J. Zhu, J. Gao, J.J. Li, X. Li, J.W. Zhao. Improve the Plasmonic Spectral Detection of Alpha-Fetoprotein: The Effect of Branch Length on the Coagulation of Gold Nanostars. Plasmonics 11 (2016) 1175-1182. https://doi.org/10.1007/s11468-015-0157-2

J. Krajczewski, K. Kołątaj, A. Kudelski. Plasmonic nanoparticles in chemical analysis. RSC Advances 7 (2017) 17559-17576. https://doi.org/10.1039/C7RA01034F

C.G. Khoury, T. Vo-Dinh. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. The Journal of Physical Chemistry C 112 (2008) 18849-18859. https://doi.org/10.1021/jp8054747

M.C. Daniel, D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews 104 (2004) 293-346. https://doi.org/10.1021/cr030698+

Y.S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Optics Express 18 (2010) 8867-8878. https://doi.org/10.1364/OE.18.008867

K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, M.L. Forrest. Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews 61 (2009) 457-466. https://doi.org/10.1016/j.addr.2009.03.010

I.P. Lau, H. Chen, J. Wang, H.C. Ong, K.C.-F. Leung, H.P. Ho, S.K. Kong. In vitro effect of CTAB-and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology 6 (2012) 847-856. https://doi.org/10.3109/17435390.2011.625132

F. Cai, S. Li, H. Huang, J. Iqbal, C. Wang, X. Jiang. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. Journal of Biomedical Materials Research Part A 110 (2022) 424-442. https://doi.org/10.1002/jbm.a.37281

H. Katas, N.Z. Moden, C.S. Lim, T. Celesistinus, J.Y. Chan, P. Ganasan, S. Suleman Ismail Abdalla. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. Journal of Nanotechnology 2018 (2018) 1-13. https://doi.org/10.1155/2018/4290705

W. Qian, M. Murakami, Y. Ichikawa, Y. Che. Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. The Journal of Physical Chemistry C 115 (2011) 23293-23298. https://doi.org/10.1021/jp2079567

F. Masse, M. Ouellette, G. Lamoureux, E. Boisselier. Gold nanoparticles in ophthalmology. Medicinal Research Reviews 39 (2019) 302-327. https://doi.org/10.1002/med.21509

S. Prabhulkar, J. Matthews, S. Rawal, R.M. Awdeh. Molecular histopathology using gold nanorods and optical coherence tomography. Investigative Ophthalmology and Visual Science 54 (2013) 1192-1200. https://doi.org/10.1167/iovs.12-10794

S.V. Kumar, D. Joshi. Ocular surface squamous neoplasia. Medical Journal Armed Forces India 74 (2018) 273-275. https://doi.org/10.1016/j.mjafi.2017.01.006

A. de la Zerda, S. Prabhulkar, V.L. Perez, M. Ruggeri, A.S. Paranjape, F. Habte, S.S. Gambhir, R.M. Awdeh. Optical coherence contrast imaging using gold nanorods in living mice eyes. Clinical & Experimental Ophthalmology 43 (2015) 358-366. https://doi.org/10.1111/ceo.12299

D. Sen, E.D. SoRelle, O. Liba, R. Dalal, Y.M. Paulus, T.-W. Kim, D.M. Moshfeghi, A. de la Zerda. High-resolution contrast-enhanced optical coherence tomography in mice retinae. Journal of Biomedical Optics 21 (2016) 066002-066002. https://doi.org/10.1117/1.JBO.21.6.066002

X. Jiang, P. Tang, P. Gao, Y.S. Zhang, C. Yi, J. Zhou. Gold Nanoprobe-Enabled Three-Dimensional Ozone Imaging by Optical Coherence Tomography. Analytical Chemistry 89 (2017) 2561-2568. https://doi.org/10.1021/acs.analchem.6b04785

M. Lapierre-Landry, A.Y. Gordon, J.S. Penn, M.C. Skala. In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye. Scientific Reports 7 (2017) 9228. https://doi.org/10.1038/s41598-017-10050-5

A.Y. Gordon, M. Lapierre-Landry, M.C. Skala, J.S. Penn. Photothermal optical coherence tomography of anti-angiogenic treatment in the mouse retina using gold nanorods as contrast agents. Translational Vision Science & Technology 8 (2019) 18-18. https://doi.org/10.1167/tvst.8.3.18

H. Kim, V.P. Nguyen, P. Manivasagan, M.J. Jung, S.W. Kim, J. Oh, H.W. Kang. Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors. Oncotarget 8 (2017) 113719. https://doi.org/10.18632/oncotarget.23092

S. Raveendran, H.-T. Lim, T. Maekawa, M.V. Matham, D.S. Kumar. Gold nanocages entering into the realm of high-contrast photoacoustic ocular imaging. Nanoscale 10 (2018) 13959-13968. https://doi.org/10.1039/C8NR02866D

W.H. De Jong, W.I. Hagens, P. Krystek, M.C. Burger, A.J. Sips, R.E. Geertsma. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29 (2008) 1912-1919. https://doi.org/10.1016/j.biomaterials.2007.12.037

B.R. Smith, S.S. Gambhir. Nanomaterials for in vivo imaging. Chemical Reviews 117 (2017) 901-986. https://doi.org/10.1021/acs.chemrev.6b00073

W.L. Wong, X. Su, X. Li, C.M.G. Cheung, R. Klein, C.Y. Cheng, T.Y. Wong. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2 (2014) e106-e116. https://doi.org/10.1016/S2214-109X(13)70145-1

Y.C. Tham, X. Li, T.Y. Wong, H.A. Quigley, T. Aung, C.Y. Cheng. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121 (2014) 2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013

T.Y. Wong, C.C.M. Gemmy, M. Larsen, S. Sharma, S. Rafael. Erratum: Diabetic Retinopathy. Nature Reviews: Disease Primers 2 (2016). https://doi.org/10.1038/nrdp.2016.12

J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones. Embryonic stem cell lines derived from human blastocysts. Science 282 (1998) 1145-1147. https://doi.org/10.1126/science.282.5391.1145

M.S. Singh, S.S. Park, T.A. Albini, M.V. Canto-Soler, H. Klassen, R.E. MacLaren, M. Takahashi, A. Nagiel, S.D. Schwartz, K. Bharti. Retinal stem cell transplantation: Balancing safety and potential. Progress in Retinal and Eye Research 75 (2020) 100779. https://doi.org/10.1016/j.preteyeres.2019.100779

S. Petrus-Reurer, H. Bartuma, M. Aronsson, S. Westman, F. Lanner, H. André, A. Kvanta. Integration of subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells in a large-eyed model of geographic atrophy. Investigative Ophthalmology and Visual Science 58 (2017) 1314-1322. https://doi.org/10.1167/iovs.16-20738

D.A. Jabs, J.T. Rosenbaum, C.S. Foster, G.N. Holland, G.J. Jaffe, J.S. Louie, R.B. Nussenblatt, E.R. Stiehm, H. Tessler, R.N. Van Gelder. Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. American Journal of Ophthalmology 130 (2000) 492-513. https://doi.org/10.1016/S0002-9394(00)00659-0

S. Thomsen. Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions. Photochemistry and Photobiology 53 (1991) 825-835. https://doi.org/10.1111/j.1751-1097.1991.tb09897.x

V.P. Nguyen, T. Zhu, J. Henry, W. Zhang, X. Wang, Y.M. Paulus. Multimodal In Vivo Imaging of Retinal and Choroidal Vascular Occlusion. Photonics 9 (2022) 201. https://doi.org/10.3390/photonics9030201

K. Peynshaert, H. Vanluchene, K. De Clerck, A.-K. Minnaert, M. Verhoeven, N. Gouspillou, N. Bostan, T. Hisatomi, G. Accou, F. Sauvage, K. Braeckmans, S. De Smedt, K. Remaut. ICG-mediated photodisruption of the inner limiting membrane enhances retinal drug delivery. Journal of Controlled Release 349 (2022) 315-326. https://doi.org/https://doi.org/10.1016/j.jconrel.2022.07.002.

留言 (0)

沒有登入
gif