Calcium signalling and transport in the kidney

Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).

Article  CAS  PubMed  Google Scholar 

Eisner, D., Neher, E., Taschenberger, H. & Smith, G. Physiology of intracellular calcium buffering. Physiol. Rev. 103, 2767–2845 (2023).

Article  CAS  PubMed  Google Scholar 

Moor, M. B. & Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 310, F1337–F1350 (2016).

Article  CAS  PubMed  Google Scholar 

Jeon, U. S. Kidney and calcium homeostasis. Electrolyte Blood Press. 6, 68–76 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander, R. T., Cordat, E., Chambrey, R., Dimke, H. & Eladari, D. Acidosis and urinary calcium excretion: insights from genetic disorders. J. Am. Soc. Nephrol. 27, 3511–3520 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, S23–S30 (2010).

Article  CAS  PubMed  Google Scholar 

Bosman, A. et al. Sexual dimorphisms in serum calcium and phosphate concentrations in the Rotterdam Study. Sci. Rep. 13, 8310 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meoli, L. & Gunzel, D. The role of claudins in homeostasis. Nat. Rev. Nephrol. 19, 587–603 (2023).

Article  CAS  PubMed  Google Scholar 

Tinawi, M. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 13, e12420 (2021).

PubMed  PubMed Central  Google Scholar 

Alexander, R. T., Fuster, D. G. & Dimke, H. Mechanisms underlying calcium nephrolithiasis. Annu. Rev. Physiol. 84, 559–583 (2022).

Article  CAS  PubMed  Google Scholar 

Alexander, R. T. Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption. Curr. Opin. Nephrol. Hypertens. 32, 359–365 (2023).

Article  CAS  PubMed  Google Scholar 

Pan, W. et al. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am. J. Physiol. Renal Physiol. 302, F943–F956 (2012).

Article  CAS  PubMed  Google Scholar 

Beggs, M. R. et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc. Natl Acad. Sci. USA 118, e2111247118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curry, J. N. et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J. Clin. Invest. 130, 1948–1960 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plain, A. et al. Claudin-12 knockout mice demonstrate reduced proximal tubule calcium permeability. Int. J. Mol. Sci. 21, 2074 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breiderhoff, T. et al. Claudin-10a deficiency shifts proximal tubular Cl− permeability to cation selectivity via claudin-2 redistribution. J. Am. Soc. Nephrol. 33, 699–717 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rouse, D., Ng, R. C. & Suki, W. N. Calcium transport in the pars recta and thin descending limb of Henle of the rabbit, perfused in vitro. J. Clin. Invest. 65, 37–42 (1980).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiebe, S. A. et al. NHE8 attenuates Ca2+ influx into NRK cells and the proximal tubule epithelium. Am. J. Physiol. Renal Physiol. 317, F240–F253 (2019).

Article  CAS  PubMed  Google Scholar 

Hou, J. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 118, 619–628 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl Acad. Sci. USA 106, 15350–15355 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

Article  CAS  PubMed  Google Scholar 

Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, M. et al. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target. Ther. 8, 261 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nilius, B. & Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 12, 218 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bacsa, B., Tiapko, O., Stockner, T. & Groschner, K. Mechanisms and significance of Ca2+ entry through TRPC channels. Curr. Opin. Physiol. 17, 25–33 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 209, 107497 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis, M. J., Earley, S., Li, Y. S. & Chien, S. Vascular mechanotransduction. Physiol. Rev. 103, 1247–1421 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikolaev, Y. A. et al. Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 132, jcs238360 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goel, M., Sinkins, W. G., Zuo, C. D., Estacion, M. & Schilling, W. P. Identification and localization of TRPC channels in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1241–F1252 (2006).

Article  CAS  PubMed  Google Scholar 

Staruschenko, A., Ma, R., Palygin, O. & Dryer, S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 103, 787–854 (2023).

Article  CAS  PubMed  Google Scholar 

Dryer, S. E., Roshanravan, H. & Kim, E. Y. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1041–1066 (2019).

Article  CAS  PubMed  Google Scholar 

Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

Article  CAS  PubMed  Google Scholar 

Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Y. et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polat, O. K. et al. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int. 103, 1056–1062 (2023).

Article  CAS  PubMed  Google Scholar 

Lenoir, O., Huber, T. B. & Tharaux, P. L. From bench to bedside: lessons learned from translational podocyte research. Kidney Int. 103, 1018–1020 (2023).

Article  PubMed 

留言 (0)

沒有登入
gif