AMPK pathway: an emerging target to control diabetes mellitus and its related complications

Singh R, Chandel S, Dey D, et al. Epigenetic Modif Therapeutic Targets Diabetes Mellitus. 2020;0:1–22.

Google Scholar 

Forbes JM, Cooper ME. Mechanisms of Diabetic complications. Physiol Rev. 2013;93:137–88.

Article  CAS  PubMed  Google Scholar 

Entezari M, Hashemi D, Taheriazam A, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother. 2022;146:112563.

Article  CAS  PubMed  Google Scholar 

Zhang P, Li T, Wu X, et al. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020;14:583–600.

Article  PubMed  Google Scholar 

Giacoman-Martínez A, Alarcón-Aguilar FJ, Zamilpa A, et al. α-Amyrin induces GLUT4 translocation mediated by AMPK and PPARδ/γ in C2C12 myoblasts. Can J Physiol Pharmacol. 2021;99:935–42.

Article  PubMed  Google Scholar 

Lee HA, Cho J-H, Afinanisa Q, et al. Ganoderma Lucidum Extract reduces insulin resistance by enhancing AMPK activation in High-Fat Diet-Induced obese mice. Nutrients. 2020;12:3338.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mancusi C, Izzo R, di Gioia G, et al. Insulin resistance the Hinge between Hypertension and Type 2 diabetes. High Blood Press Cardiovasc Prev. 2020;27:515–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo S, Gong L, Shen Q, et al. Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. J Photochem Photobiol B Biol. 2020;213:112075.

Article  CAS  Google Scholar 

Guo S, Wang G, Yang Z. Ligustilide alleviates the insulin resistance, lipid accumulation, and pathological injury with elevated phosphorylated AMPK level in rats with diabetes mellitus. J Recept Signal Transduct. 2021;41:85–92.

Article  Google Scholar 

Sun Y, Zhou Y, Shi Y, et al. Expression of miRNA-29 in pancreatic β cells promotes inflammation and diabetes via TRAF3. Cell Rep. 2021;34:108576.

Article  CAS  PubMed  Google Scholar 

Siragusa M, Oliveira Justo AF, Malacarne PF, et al. VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res. 2021;117:1546–56.

Article  CAS  PubMed  Google Scholar 

Chiva-Blanch G, Peña E, Cubedo J, et al. Molecular mapping of platelet hyperreactivity in diabetes: the stress proteins complex HSPA8/Hsp90/CSK2α and platelet aggregation in diabetic and normal platelets. Transl Res. 2021;235:1–14.

Article  CAS  PubMed  Google Scholar 

Kuo T, Hsu S, Huang S et al. Pdia4 regulates β-cell pathogenesis in diabetes: molecular mechanism and targeted therapy. EMBO Mol Med; 13. Epub ahead of print 7 October 2021. https://doi.org/10.15252/emmm.201911668.

Benchoula K, Parhar IS, Wong EH. The crosstalk of hedgehog, PI3K and wnt pathways in diabetes. Arch Biochem Biophys. 2021;698:108743.

Article  CAS  PubMed  Google Scholar 

El-Sawaf ES, Saleh S, Abdallah DM, et al. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sci. 2021;279:119697.

Article  CAS  PubMed  Google Scholar 

Wang X, Lin Y, Liang Y, et al. Phosphorylated STAT3 suppresses microRNA-19b/1281 to aggravate lung injury in mice with type 2 diabetes mellitus‐associated pulmonary tuberculosis. J Cell Mol Med. 2020;24:13763–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, Cao D, Wang Y, et al. LncRNA MEG8 is upregulated in gestational diabetes mellitus (GDM) and predicted kidney injury. J Diabetes Complications. 2021;35:107749.

Article  CAS  PubMed  Google Scholar 

Tan M-J, Ye J-M, Turner N, et al. Antidiabetic activities of triterpenoids isolated from Bitter Melon Associated with activation of the AMPK pathway. Chem Biol. 2008;15:263–73.

Article  PubMed  Google Scholar 

Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes. 2008;32:S7–12.

Article  CAS  Google Scholar 

Gu C, Li T, Jiang S, et al. AMP-activated protein kinase sparks the fire of cardioprotection against myocardial ischemia and cardiac ageing. Ageing Res Rev. 2018;47:168–75.

Article  CAS  PubMed  Google Scholar 

Jiang S, Li T, Yang Z, et al. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. 2017;38:18–27.

Article  CAS  PubMed  Google Scholar 

Sanders MJ, Grondin PO, Hegarty BD, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J. 2007;403:139–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

Article  CAS  PubMed  Google Scholar 

Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18:527–51.

Article  CAS  PubMed  Google Scholar 

Ross FA, MacKintosh C, Hardie DG. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J. 2016;283:2987–3001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suter M, Riek U, Tuerk R, et al. Dissecting the role of 5′-AMP for Allosteric Stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem. 2006;281:32207–16.

Article  CAS  PubMed  Google Scholar 

Xiao B, Sanders MJ, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472:230–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Göransson O, McBride A, Hawley SA, et al. Mechanism of action of A-769662, a Valuable Tool for activation of AMP-activated protein kinase. J Biol Chem. 2007;282:32549–60.

Article  PubMed  Google Scholar 

Pang T, Xiong B, Li J-Y, et al. Conserved α-Helix acts as Autoinhibitory sequence in AMP-activated protein kinase α subunits. J Biol Chem. 2007;282:495–506.

Article  CAS  PubMed  Google Scholar 

Oakhill JS, Chen Z-P, Scott JW, et al. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci. 2010;107:19237–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oakhill JS, Steel R, Chen Z-P, et al. AMPK is a direct Adenylate Charge-regulated protein kinase. Sci (80-). 2011;332:1433–5.

Article  CAS  Google Scholar 

Machovič M, Janeček Š. The evolution of putative starch-binding domains. FEBS Lett. 2006;580:6349–56.

Article  PubMed  Google Scholar 

Xiao B, Heath R, Saiu P, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature. 2007;449:496–500.

Article  CAS  PubMed  Google Scholar 

Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci. 1997;22:12–3.

Article  CAS  PubMed  Google Scholar 

cheung PCF, Salt IP, davies SP, et al. Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochem J. 2000;346:659.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajamohan F, Reyes AR, Frisbie RK, et al. Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J. 2016;473:581–92.

Article  CAS  PubMed  Google Scholar 

Ross FA, Jensen TE, Hardie DG. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochem J. 2016;473:189–99.

Article  CAS  PubMed  Google Scholar 

Willows R, Navaratnam N, Lima A, et al. Effect of different γ-subunit isoforms on the regulation of AMPK. Biochem J. 2017;474:1741–54.

Article  CAS  PubMed  Google Scholar 

Carling D, Mayer FV, Sanders MJ, et al. AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol. 2011;7:512–8.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif