Evaluation of hafnium oxide nanoparticles imaging characteristics as a contrast agent in X-ray computed tomography

De La Vega JC, Häfeli UO. Utilization of nanoparticles as x-ray contrast agents for diagnostic imaging applications. Contrast Media Mol Imaging. 2015;10(2):81–95.

Article  PubMed  Google Scholar 

Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, et al. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg. 2001;6(3):131–42.

Article  CAS  PubMed  Google Scholar 

Sharma B, Panta O, Lohani B, Khanal U. Computed tomography in the evaluation of pathological lesions of paranasal sinuses. J Nepal Health Res Counc. 2015;13(30):116–20.

CAS  PubMed  Google Scholar 

Bonnin A, Duvauchelle P, Kaftandjian V, Ponard P. Concept of effective atomic number and effective mass density in dual-energy x-ray computed tomography. Nucl Instrum Methods Phys Res, Sect B. 2014;318:223–31.

Article  CAS  Google Scholar 

Vrbaški S, Arana Pena LM, Brombal L, Donato S, Taibi A, Contillo A, et al. Characterization of breast tissues in density and effective atomic number basis via spectral x-ray computed tomography. Phys Med Biol. 2023;68(14):145019.

Article  Google Scholar 

Amato C, Klein L, Wehrse E, Rotkopf LT, Sawall S, Maier J, et al. Potential of contrast agents based on high-z elements for contrast-enhanced photon-counting computed tomography. Med Phys. 2020;47(12):6179–90.

Article  CAS  PubMed  Google Scholar 

Sugawara H, Suzuki S, Katada Y, Ishikawa T, Fukui R, Yamamoto Y, et al. Comparison of full-iodine conventional CT and half-iodine virtual monochromatic imaging: advantages and disadvantages. Eur Radiol. 2019;29:1400–7.

Article  PubMed  Google Scholar 

Cormode DP, Skajaa T, Van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 2008;8(11):3715–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haller C, Hizoh I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol. 2004;39(3):149–54.

Article  CAS  PubMed  Google Scholar 

Nazıroğlu M, Yoldaş N, Uzgur EN, Kayan M. Role of contrast media on oxidative stress, Ca 2+ signaling and apoptosis in kidney. J Membr Biol. 2013;246:91–100.

Article  PubMed  Google Scholar 

Uca YO, Hallmann D, Hesse B, Seim C, Stolzenburg N, Pietsch H, et al. Microdistribution of magnetic resonance imaging contrast agents in atherosclerotic plaques determined by LA-ICP-MS and SR-μXRF imaging. Mol Imag Biol. 2021;23:382–93.

Article  CAS  Google Scholar 

Perelli F, Turrini I, Giorgi MG, Renda I, Vidiri A, Straface G, et al. Contrast agents during pregnancy: pros and cons when really needed. Int J Environ Res Public Health. 2022;19(24):16699.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol. 2008;180(3):830–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nadjiri J, Pfeiffer D, Straeter AS, Noël PB, Fingerle A, Eckstein H-H, et al. Spectral computed tomography angiography with a gadolinium-based contrast agent. J Thorac Imaging. 2018;33(4):246–53.

Article  PubMed  Google Scholar 

Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

Article  CAS  PubMed  Google Scholar 

FitzGerald PF, Colborn RE, Edic PM, Lambert JW, Torres AS, Bonitatibus PJ Jr, et al. CT image contrast of high-Z elements: phantom imaging studies and clinical implications. Radiology. 2016;278(3):723–33.

Article  PubMed  Google Scholar 

Berger M, Bauser M, Frenzel T, Hilger CS, Jost G, Lauria S, et al. Hafnium-based contrast agents for X-ray computed tomography. Inorg Chem. 2017;56(10):5757–61.

Article  CAS  PubMed  Google Scholar 

Holmes DR. Corrosion of hafnium and hafnium alloys. In: Cramer SD, Covino BS, Jr., editors. Corrosion: materials, vol 13B. ASM International; 2005.

Zhang C-B, Li W-D, Zhang P, Wang B-T. First-principles calculations of phase transition, elasticity, phonon spectra, and thermodynamic properties for hafnium. Comput Mater Sci. 2019;157:121–31.

Article  CAS  Google Scholar 

Bonvalot S, Rutkowski P, Thariat J, Carrere S, Sunyach M-P, Saada E, et al. A phase II/III trial of hafnium oxide nanoparticles activated by radiotherapy in the treatment of locally advance soft tissue sarcoma of the extremity and trunk wall. Ann Oncol. 2018;29:viii753.

Article  Google Scholar 

Jost G, McDermott M, Gutjahr R, Nowak T, Schmidt B, Pietsch H. New contrast media for K-edge imaging with photon-counting detector CT. Invest Radiol. 2023;58(7):515–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, et al. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions. Chem Soc Rev. 2022;51(18):7810–82.

Article  CAS  PubMed  Google Scholar 

Hu Z, Peng Y, Kang Z, Qian Y, Zhao D. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg Chem. 2015;54(10):4862–8.

Article  CAS  PubMed  Google Scholar 

Bushong SC. Radiologic science for technologists e-book: radiologic science for technologists e-book. Elsevier Health Sciences; 2020.

Murugasamy J, Ramalakshmi N, Pandiyan R, Ayyaru S, Jayaraman V, Ahn Y-H. Synthesis and characterization of sulfonated hafnium oxide nanoparticles for energy storage devices. Inorg Chem Commun. 2022;141: 109615.

Article  CAS  Google Scholar 

Dekrafft KE, Boyle WS, Burk LM, Zhou OZ, Lin W. Zr-and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. J Mater Chem. 2012;22(35):18139–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roessler A-C, Hupfer M, Kolditz D, Jost G, Pietsch H, Kalender WA. High atomic number contrast media offer potential for radiation dose reduction in contrast-enhanced computed tomography. Invest Radiol. 2016;51(4):249–54.

Article  CAS  PubMed  Google Scholar 

Flohr T, Petersilka M, Henning A, Ulzheimer S, Ferda J, Schmidt B. Photon-counting CT review. Physica Med. 2020;79:126–36.

Article  Google Scholar 

Ibrahim M, Parmar H, Christodoulou E, Mukherji S. Raise the bar and lower the dose: current and future strategies for radiation dose reduction in head and neck imaging. Am J Neuroradiol. 2014;35(4):619–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrero A, Gutjahr R, Halaweish AF, Leng S, McCollough CH. Characterization of urinary stone composition by use of whole-body, photon-counting detector CT. Acad Radiol. 2018;25(10):1270–6.

Article  PubMed  PubMed Central  Google Scholar 

Long Y, Fessler JA. Multi-material decomposition using statistical image reconstruction for spectral CT. IEEE Trans Med Imaging. 2014;33(8):1614–26.

Article  PubMed  PubMed Central  Google Scholar 

Nowak T, Hupfer M, Brauweiler R, Eisa F, Kalender WA. Potential of high-Z contrast agents in clinical contrast-enhanced computed tomography. Med Phys. 2011;38(12):6469–82.

Article  CAS  PubMed  Google Scholar 

Su Y, Liu S, Guan Y, Xie Z, Zheng M, Jing X. Renal clearable Hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer. Biomaterials. 2020;255: 120110.

Article  CAS  PubMed  Google Scholar 

Mesbahi A, Famouri F, Ahar MJ, Ghaffari MO, Ghavami SM. A study on the imaging characteristics of gold nanoparticles as a contrast agent in x-ray computed tomography. Polish Journal of Medical Physics and Engineering. 2017;23(1):9.

Article  Google Scholar 

McGinnity TL, Dominguez O, Curtis TE, Nallathamby PD, Hoffman AJ, Roeder RK. Hafnia (HfO 2) nanoparticles as an x-ray contrast agent and mid-infrared biosensor. Nanoscale. 2016;8(28):13627–37.

Article  CAS  PubMed  Google Scholar 

Gerward L, Guilbert N, Jensen KB, Levring H. x-ray absorption in matter. Reengineering XCOM Radiat Phys Chem. 2001;60(1–2):23–4.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif