Association of the rate of torque development and joint angle with passive muscle stiffness

Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93(4):1318–1326. https://doi.org/10.1152/japplphysiol.00283.2002

Article  PubMed  Google Scholar 

Ando R, Suzuki Y (2019) Positive relationship between passive muscle stiffness and rapid force production. Hum Mov Sci 66:285–291. https://doi.org/10.1016/j.humov.2019.05.002

Article  PubMed  Google Scholar 

Ando R, Sato S, Hirata N, Tanimoto H, Imaizumi N, Suzuki Y, Hirata K, Akagi R (2021a) Relationship between drop mump training-induced changes in passive plantar flexor stiffness and explosive performance. Front Physiol 12:777268. https://doi.org/10.3389/fphys.2021.777268

Article  PubMed  PubMed Central  Google Scholar 

Ando R, Sato S, Hirata N, Tanimoto H, Imaizumi N, Suzuki Y, Hirata K, Akagi R (2021b) Relationship between resting medial gastrocnemius stiffness and drop jump performance. J Electromyogr Kinesiol 58:102549. https://doi.org/10.1016/j.jelekin.2021.102549

Article  PubMed  Google Scholar 

Blazevich AJ, Horne S, Cannavan D, Coleman DR, Aagaard P (2008) Effect of contraction mode of slow-speed resistance training on the maximum rate of force development in the human quadriceps. Muscle Nerve 38(3):1133–1146. https://doi.org/10.1002/mus.21021

Article  PubMed  Google Scholar 

Blazevich AJ, Cannavan D, Horne S, Coleman DR, Aagaard P (2009) Changes in muscle force-length properties affect the early rise of force in vivo. Muscle Nerve 39(4):512–520. https://doi.org/10.1002/mus.21259

Article  PubMed  Google Scholar 

Chino K, Takahashi H (2016) Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences. Eur J Appl Physiol 116(4):823–830. https://doi.org/10.1007/s00421-016-3339-5

Article  PubMed  Google Scholar 

Cohen J (1988) Statistical power analysis for the behavioral sciences (Second Edition), 2nd edn. Routledge, Hillsdale, MI

Google Scholar 

Crotty ED, Furlong LM, Harrison AJ (2024) Neuromuscular plantar flexor performance of sprinters versus physically active individuals. Med Sci Sports Exerc 56(1):82–91. https://doi.org/10.1249/MSS.0000000000003288

Article  CAS  PubMed  Google Scholar 

de Ruiter CJ, Kooistra RD, Paalman MI, de Haan A (2004) Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J Appl Physiol 97(5):1693–1701. https://doi.org/10.1152/japplphysiol.00230.2004

Article  PubMed  Google Scholar 

de Ruiter CJ, Busé-Pot TE, de Haan A (2008) The length dependency of maximum force development in rat medial gastrocnemius muscle in situ. Appl Physiol Nutr Metab 33(3):518–526. https://doi.org/10.1139/H08-029

Article  PubMed  Google Scholar 

Ducomps C, Mauriège P, Darche B, Combes S, Lebas F, Doutreloux JP (2003) Effects of jump training on passive mechanical stress and stiffness in rabbit skeletal muscle: role of collagen. Acta Physiol Scand 178(3):215–224. https://doi.org/10.1046/j.1365-201X.2003.01109.x

Article  CAS  PubMed  Google Scholar 

Ema R, Saito M, Ohki S, Takayama H, Yamada T, Akagi R (2016) Association between rapid force production by the plantar flexors and balance performance in elderly men and women. Age. 38(5–6):475–483. https://doi.org/10.1007/s11357-016-9949-3

Article  PubMed  PubMed Central  Google Scholar 

Ema R, Saito I, Akagi R (2018) Neuromuscular adaptations induced by adjacent joint training. Scand J Med Sci Sports 28(3):947–960. https://doi.org/10.1111/sms.13008

Article  CAS  PubMed  Google Scholar 

Finni T, de Brito FH, Maas H (2023) Force transmission and interactions between synergistic muscles. J Biomech 152:111575. https://doi.org/10.1016/j.jbiomech.2023.111575

Article  PubMed  Google Scholar 

Folland JP, Buckthorpe MW, Hannah R (2014) Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports 24(6):894–906. https://doi.org/10.1111/sms.12131

Article  CAS  PubMed  Google Scholar 

Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H, Edgerton VR (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10(6):928–934. https://doi.org/10.1002/jor.1100100623

Article  CAS  PubMed  Google Scholar 

Hager R, Poulard T, Nordez A, Dorel S, Guilhem G (2020) Influence of joint angle on muscle fascicle dynamics and rate of torque development during isometric explosive contractions. J Appl Physiol 129(3):569–579. https://doi.org/10.1152/japplphysiol.00143.2019

Article  PubMed  Google Scholar 

Herbert R (1988) The passive mechanical properties of muscle and their adaptations to altered patterns of use. Aust J Physiother 34(3):141–149. https://doi.org/10.1016/S0004-9514(14)60606-1

Article  CAS  PubMed  Google Scholar 

Hirata K, Kanehisa H, Miyamoto-Mikami E, Miyamoto N (2015) Evidence for intermuscle difference in slack angle in human triceps surae. J Biomech 48(6):1210–1213. https://doi.org/10.1016/j.jbiomech.2015.01.039

Article  PubMed  Google Scholar 

Hirata K, Miyamoto-Mikami E, Kanehisa H, Miyamoto N (2016) Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol 116(5):911–918. https://doi.org/10.1007/s00421-016-3349-3

Article  PubMed  Google Scholar 

Janse DEJX (2003) Effects of the menstrual cycle on exercise performance. Sports Med 33(11):833–851. https://doi.org/10.2165/00007256-200333110-00004

Article  Google Scholar 

Khowailed IA, Lee Y, Lee H (2022) Assessing the differences in muscle stiffness measured with shear wave elastography and myotonometer during the menstrual cycle in young women. Clin Physiol Funct Imaging 42(5):320–326. https://doi.org/10.1111/cpf.12763

Article  PubMed  Google Scholar 

Kubo K, Miyamoto M, Tanaka S, Maki A, Tsunoda N, Kanehisa H (2009) Muscle and tendon properties during menstrual cycle. Int J Sports Med 30(2):139–143. https://doi.org/10.1055/s-0028-1104573

Article  CAS  PubMed  Google Scholar 

Lanza MB, Balshaw TG, Folland JP (2019) Explosive strength: effect of knee-joint angle on functional, neural, and intrinsic contractile properties. Eur J Appl Physiol 119(8):1735–1746. https://doi.org/10.1007/s00421-019-04163-0

Article  PubMed  PubMed Central  Google Scholar 

Maas H (2019) Significance of epimuscular myofascial force transmission under passive muscle conditions. J Appl Physiol 126(5):1465–1473. https://doi.org/10.1152/japplphysiol.00631.2018

Article  PubMed  Google Scholar 

Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116(6):1091–1116. https://doi.org/10.1007/s00421-016-3346-6

Article  PubMed  PubMed Central  Google Scholar 

Maganaris CN (2003) Force-length characteristics of the in vivo human gastrocnemius muscle. Clin Anat 16(3):215–223. https://doi.org/10.1002/ca.10064

Article  PubMed  Google Scholar 

Miyamoto N, Mitsukawa N, Sugisaki N, Fukunaga T, Kawakami Y (2010) Joint angle dependence of intermuscle difference in postactivation potentiation. Muscle Nerve 41(4):519–523. https://doi.org/10.1002/mus.21529

Article  PubMed  Google Scholar 

Nakamura M, Sato S, Kiyono R, Yahata K, Yoshida R, Fukaya T, Nishishita S, Knorad A (2021) Relationship between changes in passive properties and muscle strength after static stretching. J Bodyw Mov Ther 28:535–539. https://doi.org/10.1016/j.jbmt.2021.09.012

Article  PubMed  Google Scholar 

Patel TJ, Lieber RL (1997) Force transmission in skeletal muscle: from actomyosin to external tendons. Exerc Sport Sci Rev 25:321–363

Article  CAS  PubMed  Google Scholar 

Rousanoglou EN, Herzog W, Boudolos KD (2010) Moment-angle relations in the initial time of contraction. Int J Sports Med 31(9):651–655. https://doi.org/10.1055/s-0030-1255114

Article  CAS  PubMed  Google Scholar 

Silver NC, Hittner JB, May K (2004) Testing dependent correlations with nonoverlapping variables: a Monte Carlo simulation. J Exp Educ 73(1):53–69

Article  Google Scholar 

Tillin NA, Jimenez-Reyes P, Pain MT, Folland JP (2010) Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc 42(4):781–790. https://doi.org/10.1249/MSS.0b013e3181be9c7e

Article  PubMed  Google Scholar 

Tillin NA, Pain MT, Folland JP (2012) Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts. Proc Biol Sci 279(1736):2106–2115. https://doi.org/10.1098/rspb.2011.2109

Article  PubMed  PubMed Central  Google Scholar 

Trajano GS, Seitz LB, Nosaka K, Blazevich AJ (2019) Passive muscle stretching impairs rapid force production and neuromuscular function in human plantar flexors. Eur J Appl Physiol 119(11–12):2673–2684. https://doi.org/10.1007/s00421-019-04244-0

Article  PubMed  Google Scholar 

Waugh CM, Korff T, Fath F, Blazevich AJ (2013) Rapid force production in children and adults: mechanical and neural contributions. Med Sci Sports Exerc 45(4):762–771. https://doi.org/10.1249/MSS.0b013e31827a67ba

留言 (0)

沒有登入
gif