Study on Fine-Grained Visual Classification of Low-Resolution Urinary Erythrocyte

Boris B, Caroline A, Andrew S,et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2020; 395(10225):709-733 https://doi.org/10.1016/S0140-6736(20)30045-3.

Article  Google Scholar 

Zhang S. Research on automatic detection of urine sediments based on deep learning. Anhui: Anhui University, 2020.

Google Scholar 

Xie X M, Zhang J F, Zhong M X, Lv J Z, Chen J Y. The value of urine erythrocyte morphological typing in the differential diagnosis of renal isohematuria. Journal of Practical Medical Technology 2020,25(02):175-1176.https://doi.org/10.19522/j.cnki.1671-5098.2018.02.026

Article  Google Scholar 

Ran H. The diagnostic significance of urine erythrocyte morphology in hematuria localization test. Electronic Journal of Clinical Medicine Literature 2017,4(04):623. https://doi.org/10.16281/j.cnki.jocml.2017.04.020.

Article  Google Scholar 

Zheng X. Clinical effect of microscopic examination and automatic analyzer for urine sediment in routine urine test. Journal of Clinical Medicine Literature 2019, 8(01):38-40.

Google Scholar 

Zhang M. “Color chart of urine sediment” in Atlas of Urine Formed Element, Beijing, China: People's Med. Publish. House, 2014, pp. 55-56.

Google Scholar 

Zhang X L. Effect of different urine samples on the detection of urine red blood cell phase. Chinese Science and Technology Journal Database (Full Text Edition) Medicine and Health 2022, 2022(8): 216-218.

Tangsuksant W, Pintavirooj C, Taertulakarn S, et al. Development algorithm to count blood cells in urine sediment using ANN and Hough Transform. The 6th 2013 Biomedical Engineering International Conference, 2013: 1-4, https://doi.org/10.1109/BMEiCon.2013.6687725.

Qi H Y. Discussion on the causes of false-positive results of urine red blood cells detected by automatic urine sediment analyzer. Qinghai Medical Journal 2017,47(12):44-45. CNKI:SUN:QHYZ.0.2017-12-022.

Google Scholar 

Qi H Y. Discussion on the causes of false positive results of urine red blood cells detected by fully automatic urine sediment analyzer. Chin Med J, 2017;47(12): 44–5.

Edlund C, Jackson T R, Khalid N, et al. LIVECell—A large-scale dataset for label-free live cell segmentation. Nature Methods 2021, 18(9): 1038-1045. https://doi.org/10.1038/s41592-021-01249-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei X S, Xie C W, Wu J. Mask-CNN: Localizing Parts and Selecting Descriptors for Fine-Grained Image Recognition. Pattern Recognition, 2018, 76: 704-714. https://doi.org/10.48550/arXiv.1605.06878.

Article  Google Scholar 

Lin D, Shen X, Lu C, et al. Deep LAC: Deep localization, alignment and classification for fine-grained recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2015: 1666-1674 https://doi.org/10.1109/CVPR.2015.7298775.

Zhang N, Donahue J, Girshick R, et al. Part-based R-CNNs for fine-grained category detection. Proceedings of the European Conference on Computer Vision, 2014: 834-849.

Girshick R, Donahue J, Darrel T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2014: 580-587 https://doi.org/10.1109/CVPR.2014.81.

Du R Y, Chang D L, Bhunia A K, et al. Fine-Grained Visual Classification via Progressive Multi-Granularity Training of Jigsaw Patches. Proceedings of the European Conference on Computer Vision, 2020: 153-168 https://doi.org/10.1007/978-3-030-58565-5_10.

Huang S, Wang X, D. Tao. Stochastic Partial Swap: Enhanced Model Generalization and Interpretability for Fine-grained Recognition. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, 600-609.

He J, Chen J N, Liu S, et al. TransFG: A Transformer Architecture for Fine-grained Recognition. arXiv preprint arXiv:2103.07976,2021.

Zhang Y, Cao Jian, Zhang L, et al. A free lunch from ViT: adaptive attention multi-scale fusion Transformer for fine-grained visual recognition. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, 3234-3238, https://doi.org/10.48550/arXiv.2110.01240.

Shu Y Y, Yu B S, Xu H M, et al. Improving Fine-Grained Visual Recognition in Low Data Regimes via Self-Boosting Attention Mechanism. Proceedings of the European Conference on Computer Vision, 2022: 449-465 https://doi.org/10.48550/arXiv.2208.00617.

Wei X, Qin W L and Wang M L. A sub classification method of red blood cell image based on CNN. China,2019, ZL201811154965.0.

Zhong C, Pan M, Peng C, et al. Research on a Classification and Recognition Algorithm Based on Nearest Neighbors. Electronic Components and Information Technology, 2020, 4(10): 44-45.

Google Scholar 

Li K, Li M, Wu Y, et al. An Accurate Urine Erythrocytes Detection Model Coupled Faster RCNN with VggNet. CAIH2020: 2020 Conference in Artificial Intelligence and Healthcare,2020. https://doi.org/10.1145/3433996.3434037.

Li M, Li X, Yue J, et al. A Method and System for Classification and Statistics of Erythrocytes in Deformed Urine. CN111047577A[P]. 2020.

Zhao X, Xiang J, Ji Q. Urine red blood cell classification based on Siamese Network[J]. Journal of Physics: Conference Series, 2021, 1873(1):012089 (7pp). https://doi.org/10.1088/1742-6596/1873/1/012089.

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016: 770-778, https://doi.org/10.1109/CVPR.2016.90.

Radu T, Eirikur A, Luc V G, et al. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017: 114–125 https://doi.org/10.1109/CVPRW.2017.149.

Article  Google Scholar 

Marco B, Aline R, Christine G, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the British Machine Vision Conference,2012.

Roman Z, Michael E, and Matan P. On single image scale-up using sparse-representations. In International conference on curves and surfaces, 2010: 711–730, https://doi.org/10.1007/978-3-642-27413-8_47.

Liu S, Wang Y, Yang X, et al. Deep learning in medical ultrasound analysis: a review. Engineering, 2019, 5(2): 261-275, https://doi.org/10.1016/j.eng.2018.11.020.

Article  Google Scholar 

Y. Mei, Y. Fan, Y. Zhou, et al. Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5689-5698 https://doi.org/10.1109/CVPR42600.2020.00573.

Article  Google Scholar 

Zhang H Y, Cisse M, Dauphin Y N, David L P. mixup: Beyond empirical risk minimization. In International Conferenceon Learning Representations,  https://doi.org/10.48550/arXiv.1710.09412.

Zhao X, Xiang J, Ji Q. 2021. Urine red blood cell classification based on Siamese Network. J of Phys: Conf Ser, 1873(1):012089 (7pp).

Gu J , Dong C . “Interpreting Super-Resolution Networks with Local Attribution Maps”. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9199-9208, https://doi.org/10.48550/arXiv.2011.11036.

Article  Google Scholar 

留言 (0)

沒有登入
gif