Real-Time Optimal Synthetic Inversion Recovery Image Selection (RT-OSIRIS) for Deep Brain Stimulation Targeting

Lee DJ, Lozano CS, Dallapiazza RF, Lozano AM. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg. 2019;131(2):333-342. https://doi.org/10.3171/2019.4.JNS181761

Article  CAS  PubMed  Google Scholar 

Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115(1):19-38. https://doi.org/10.1152/jn.00281.2015

Article  CAS  PubMed  Google Scholar 

Richardson RM, Ostrem JL, Starr PA. Surgical repositioning of misplaced subthalamic electrodes in Parkinson’s disease: location of effective and ineffective leads. Stereotact Funct Neurosurg. 2009;87(5):297-303. https://doi.org/10.1159/000230692

Article  PubMed  Google Scholar 

Vayssiere N, Hemm S, Cif L, et al. Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg. 2002;96(4):673-679. https://doi.org/10.3171/jns.2002.96.4.0673

Article  PubMed  Google Scholar 

Landi A, Grimaldi M, Antonini A, Parolin M, Zincone A Marina null. MRI indirect stereotactic targeting for deep brain stimulation in Parkinson’s disease. J Neurosurg Sci. 2003;47(1):26–32.

Grewal SS, Middlebrooks EH, Okromelidze L, et al. Variability Between Direct and Indirect Targeting of the Anterior Nucleus of the Thalamus. World Neurosurg. 2020;139:e70-e77. https://doi.org/10.1016/j.wneu.2020.03.107

Article  PubMed  Google Scholar 

Melo M, Furlanetti L, Hasegawa H, Mundil N, Ashkan K. Comparison of direct MRI guided versus atlas-based targeting for subthalamic nucleus and globus pallidus deep brain stimulation. Br J Neurosurg. 2023;37(5):1040-1045. https://doi.org/10.1080/02688697.2020.1850641

Article  PubMed  Google Scholar 

Rabie A, Verhagen Metman L, Slavin KV. Using “Functional” Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide? Brain Sci. 2016;6(4):65. https://doi.org/10.3390/brainsci6040065

Article  PubMed  PubMed Central  Google Scholar 

Middlebrooks EH, Domingo RA, Vivas-Buitrago T, et al. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol. 2020;41(9):1558-1568. https://doi.org/10.3174/ajnr.A6693

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathiopoulou V, Rijks N, Caan MWA, et al. Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease. Neuromodulation J Int Neuromodulation Soc. 2023;26(2):333-339. https://doi.org/10.1016/j.neurom.2022.01.003

Article  Google Scholar 

Patriat R, Cooper SE, Duchin Y, et al. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. NeuroImage. 2018;178:198-209. https://doi.org/10.1016/j.neuroimage.2018.05.048

Article  PubMed  Google Scholar 

Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage. 2009;47 Suppl 2:T44-52. https://doi.org/10.1016/j.neuroimage.2009.04.018

Article  PubMed  Google Scholar 

Tao S, Zhou X, Westerhold EM, Middlebrooks EH, Lin C. Optimization of fast gray matter acquisition T1 inversion recovery (FGATIR) on 7T MRI for deep brain stimulation targeting. NeuroImage. 2022;252:119043. https://doi.org/10.1016/j.neuroimage.2022.119043

Article  PubMed  Google Scholar 

Middlebrooks EH, Okromelidze L, Lin C, et al. Edge-enhancing gradient echo with multi-image co-registration and averaging (EDGE-MICRA) for targeting thalamic centromedian and parafascicular nuclei. Neuroradiol J. 2021;34(6):667-675. https://doi.org/10.1177/19714009211021781

Article  PubMed  PubMed Central  Google Scholar 

Vassal F, Coste J, Derost P, et al. Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimulat. 2012;5(4):625–633. https://doi.org/10.1016/j.brs.2011.10.007

Tao S, Zhou X, Lin C, Patel V, Westerhold EM, Middlebrooks EH. Optimization of MP2RAGE T1 mapping with radial view-ordering for deep brain stimulation targeting at 7 T MRI. Magn Reson Imaging. 2023;100:55-63. https://doi.org/10.1016/j.mri.2023.03.007

Article  PubMed  Google Scholar 

Burkett BJ, Fagan AJ, Felmlee JP, et al. Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges. Neuroradiology. 2021;63(2):167-177. https://doi.org/10.1007/s00234-020-02629-z

Article  PubMed  Google Scholar 

Gonçalves FG, Serai SD, Zuccoli G. Synthetic Brain MRI: Review of Current Concepts and Future Directions. Top Magn Reson Imaging TMRI. 2018;27(6):387-393. https://doi.org/10.1097/RMR.0000000000000189

Article  PubMed  Google Scholar 

Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49(2):1271-1281. https://doi.org/10.1016/j.neuroimage.2009.10.002

Article  PubMed  Google Scholar 

Middlebrooks EH, Tao S, Zhou X, et al. Synthetic Inversion Image Generation using MP2RAGE T1 Mapping for Surgical Targeting in Deep Brain Stimulation and Lesioning. Stereotact Funct Neurosurg. 2023;101(5):326-331. https://doi.org/10.1159/000533259

Article  PubMed  Google Scholar 

Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323-1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

Michie D. “Memo” Functions and Machine Learning. Nature. 1968;218(5136):19-22. https://doi.org/10.1038/218019a0

Article  Google Scholar 

Zhang G, Sanchez D. Leveraging Hardware Caches for Memoization. IEEE Comput Archit Lett. 2018;17(1):59-63. https://doi.org/10.1109/LCA.2017.2762308

Article  Google Scholar 

Chung KL, Wu ST. Inverse halftoning algorithm using edge-based lookup table approach. IEEE Trans Image Process. 2005;14(10):1583-1589. https://doi.org/10.1109/TIP.2005.854494

Article  PubMed  Google Scholar 

Foley J, Kim W. Image Composition via Lookup Table Manipulation. IEEE Comput Graph Appl. 1987;7(11):26-35. https://doi.org/10.1109/MCG.1987.277067

Article  Google Scholar 

Wilcox C, Strout MM, Bieman JM. Mesa: automatic generation of lookup table optimizations. In: Proceedings of the 4th International Workshop on Multicore Software Engineering. IWMSE ’11. Association for Computing Machinery; 2011:1–8. https://doi.org/10.1145/1984693.1984694

Snyder J, Seres P, Stobbe RW, et al. Inline dual-echo T2 quantification in brain using a fast mapping reconstruction technique. NMR Biomed. 2023;36(1):e4811. https://doi.org/10.1002/nbm.4811

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif