The impact of lipidome on breast cancer: a Mendelian randomization study

Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell. 2023;186:1708–28.

Article  CAS  PubMed  Google Scholar 

Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50:33.

Article  PubMed  PubMed Central  Google Scholar 

Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: an overview. Updates Surg. 2017;69:313–7.

Article  PubMed  Google Scholar 

DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics. CA Cancer J Clin. 2013;64(2014):52–62.

PubMed  Google Scholar 

H Zhong, G Zeng, and L He, Overexpression of the lncRNA AC012213.3 Promotes Proliferation, Migration and Invasion of Breast Cancer via RAD54B/PI3K/AKT Axis and is Associated with Worse Patient Prognosis. Cancer Manag Res 2021;13:7213–7223.

M.P. Coleman, M. Quaresma, F. Berrino, J.M. Lutz, R. De Angelis, R. Capocaccia, P. Baili, B. Rachet, G. Gatta, T. Hakulinen, A. Micheli, M. Sant, H.K. Weir, J.M. Elwood, H. Tsukuma, S. Koifman, E.S. GA, S. Francisci, M. Santaquilani, A. Verdecchia, H.H. Storm, J.L. Young, and C.W. Group, Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol 2008;9:730–56.

Lin Y, Zhang Y, Wang S, Yang Q. Elucidating the relationship between metabolites and breast cancer: A Mendelian randomization study. Toxicol Appl Pharmacol. 2024;484: 116855.

Article  CAS  PubMed  Google Scholar 

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023;73(2023):17–48.

Article  PubMed  Google Scholar 

Liu G, Hou S, Tong P, Li J. Liposomes: Preparation, Characteristics, and Application Strategies in Analytical Chemistry. Crit Rev Anal Chem. 2022;52:392–412.

Article  CAS  PubMed  Google Scholar 

Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020;154–155:102–22.

Article  PubMed  Google Scholar 

Guimaraes D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601: 120571.

Article  CAS  PubMed  Google Scholar 

Shah SM, Goel PN, Jain AS, Pathak PO, Padhye SG, Govindarajan S, Ghosh SS, Chaudhari PR, Gude RP, Gopal V, Nagarsenker MS. Liposomes for targeting hepatocellular carcinoma: use of conjugated arabinogalactan as targeting ligand. Int J Pharm. 2014;477:128–39.

Article  CAS  PubMed  Google Scholar 

Shah SM, Pathak PO, Jain AS, Barhate CR, Nagarsenker MS. Synthesis, characterization, and in vitro evaluation of palmitoylated arabinogalactan with potential for liver targeting. Carbohydr Res. 2013;367:41–7.

Article  CAS  PubMed  Google Scholar 

Dutta R, Mahato RI. Recent advances in hepatocellular carcinoma therapy. Pharmacol Ther. 2017;173:106–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu B, Zhao X, Lee LJ, Lee RJ. Targeted delivery systems for oligonucleotide therapeutics. AAPS J. 2009;11:195–203.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eloy JO, Petrilli R, Trevizan LNF, Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces. 2017;159:454–67.

Article  CAS  PubMed  Google Scholar 

Chavda VP, Vihol D, Mehta B, Shah D, Patel M, Vora LK, Pereira-Silva M, Paiva-Santos AC. Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine (Lond). 2022;17:547–68.

Article  CAS  PubMed  Google Scholar 

Jain AS, Goel PN, Shah SM, Dhawan VV, Nikam Y, Gude RP, Nagarsenker MS. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: in vitro and in vivo evaluation. Biomed Pharmacother. 2014;68:429–38.

Article  CAS  PubMed  Google Scholar 

G.Y.W. Tseu, and K.A. Kamaruzaman, A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Mole.  20232;28.

SY Shin, EB Fauman, AK Petersen, J Krumsiek, R Santos, J Huang, M Arnold, I Erte, V Forgetta, TP Yang, K Walter, C Menni, L Chen, L Vasquez, AM Valdes, CL Hyde, V Wang, D Ziemek, P Roberts, L Xi, E Grundberg, C. Multiple Tissue Human Expression Resource, M. Waldenberger, JB Richards, RP Mohney, MV Milburn, SL John, J Trimmer, FJ Theis, JP  Overington, K Suhre, MJ Brosnan, C Gieger, G Kastenmuller, TD Spector, and N Soranzo, An atlas of genetic influences on human blood metabolites. Nat Genet 2014;46:543–550.

Murphy N, Knuppel A, Papadimitriou N, Martin RM, Tsilidis KK, Smith-Byrne K, Fensom G, Perez-Cornago A, Travis RC, Key TJ, Gunter MJ. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with approximately 430 000 women. Ann Oncol. 2020;31:641–9.

Article  CAS  PubMed  Google Scholar 

N. Seyed Khoei, R. Carreras-Torres, N. Murphy, M.J. Gunter, P. Brennan, K. Smith-Byrne, D. Mariosa, J. McKay, T.A. O'Mara, R. Jarrett, H. Hjalgrim, K.E. Smedby, W. Cozen, K. Onel, A. Diepstra, K.H. Wagner, and H. Freisling, Genetically Raised Circulating Bilirubin Levels and Risk of Ten Cancers: A Mendelian Randomization Study. Cells 2021:10.

NM Davies, MV Holmes, and G Davey Smith, Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.

L Ottensmann, R Tabassum, SE Ruotsalainen, MJ Gerl, C Klose, E Widen, FinnGen, K  Simons, S Ripatti, and M Pirinen, Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun 2023;14:6934.

K Michailidou, S Lindstrom, J Dennis, J Beesley, S Hui, S Kar, A Lemacon, P Soucy, D Glubb, A Rostamianfar, MK Bolla, Q Wang, J Tyrer, E Dicks, A Lee, Z Wang, J Allen, R Keeman, U Eilber, JD French, X Qing Chen, L Fachal, K McCue, AE McCart Reed, M Ghoussaini, JS Carroll, X Jiang, H Finucane, M Adams, MA Adank, H Ahsan, K Aittomaki, H Anton-Culver, NN Antonenkova, V Arndt, KJ Aronson, B Arun, PL Auer, F Bacot, M Barrdahl, C Baynes, MW Beckmann, S Behrens, J Benitez, M Bermisheva, L Bernstein, C Blomqvist, NV Bogdanova, SE Bojesen, B Bonanni, AL Borresen-Dale, JS Brand, H Brauch, P Brennan, H Brenner, L Brinton, P Broberg, IW Brock, A Broeks, A Brooks-Wilson, SY Brucker, T Bruning, B Burwinkel, K Butterbach, Q Cai, H Cai, T Caldes, F Canzian, A Carracedo, BD Carter, JE Castelao, TL Chan, TY David Cheng, K Seng Chia, JY Choi, H Christiansen, CL Clarke, N Collaborators, M Collee, DM Conroy, E Cordina-Duverger, S Cornelissen, DG Cox, A Cox, SS Cross, JM Cunningham, K Czene, MB Daly, P Devilee, KF Doheny, T Dork, I Dos-Santos-Silva, M Dumont, L Durcan, M Dwek, DM Eccles, AB Ekici, AH Eliassen, C Ellberg, M Elvira, et al., Association analysis identifies 65 new breast cancer risk loci. Nature 2017;551:92–94.

Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DA Lawlor, RM Harbord, JA Sterne, N Timpson, and G Davey Smith. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008;27:1133–63.

Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat Commun. 2020;11:29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

J Bowden, G Davey Smith, and S Burgess. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 2015;44:512–25.

Burgess S, Zuber V, Valdes-Marquez E, Sun BB, Hopewell JC. Mendelian randomization with fine-mapped genetic data: Choosing from large numbers of correlated instrumental variables. Genet Epidemiol. 2017;41:714–25.

Article  PubMed  PubMed Central  Google Scholar 

van Meer G, de Kroon AI. Lipid map of the mammalian cell. J Cell Sci. 2011;124:5–8.

Article  PubMed  Google Scholar 

Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

Article  CAS  PubMed  Google Scholar 

N. Cancer Genome Atlas, Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.

Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29:4452–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holub BJ, Kuksis A. Structural and metabolic interrelationships among glycerophosphatides of rat liver in vivo. Can J Biochem. 1971;49:1347–56.

Article  CAS  PubMed  Google Scholar 

Baker RR, Thompson W. Positional distribution and turnover of fatty acids in phosphatidic acid, phosphinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo. Biochim Biophys Acta. 1972;270:489–503.

Article  CAS  PubMed  Google Scholar 

Lee HC, Kubo T, Kono N, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Inoue T, Arai H. Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI 3-phosphate signaling in Caenorhabditis elegans. Genes Cells. 2012;17:748–57.

Article  CAS  PubMed  Google Scholar 

Kawashima M, Iwamoto N, Kawaguchi-Sakita N, Sugimoto M, Ueno T, Mikami Y, Terasawa K, Sato TA, Tanaka K, Shimizu K, Toi M. High-resolution imaging mass spectrometry reveals detailed spatial distribution of phosphatidylinositols in human breast cancer. Cancer Sci. 2013;104:1372–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–65.

Article  CAS  PubMed  Google Scholar 

Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D Hoshino, J Jourquin, SW Emmons, T Miller, M Goldgof, K Costello, DR Tyson, B Brown, Y Lu, NK Prasad, B Zhang, GB Mills, WG Yarbrough, V Quaranta, M Seiki, and AM Weaver, Network analysis of the focal adhesion to invadopodia transition identifies a PI3K-PKCalpha invasive signaling axis. Sci Signal 2012;5:ra66.

Wander SA, Zhao D, Besser AH, Hong F, Wei J, Ince TA, Milikowski C, Bishopric NH, Minn AJ, Creighton CJ, Slingerland JM. PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro: implications for targeted therapy. Breast Cancer Res Treat. 2013;138:369–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

F Yang, Y Xiao, JH Ding, X Jin, D Ma, DQ Li, JX Shi, W Huang, YP Wang, YZ Jiang, and ZM Shao, Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab 2023;35:84–100 e8.

GH Su, Y Xiao, C You, RC Zheng, S Zhao, SY Sun, JY Zhou, LY Lin, H Wang, ZM Shao, YJ Gu, and YZ Jiang, Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets. Sci Adv 2023;9:eadf0837.

Li YQ, Sun FZ, Li CX, Mo HN, Zhou YT, Lv D, Zhai JT, Qian HL, Ma F. RARRES2 regulates lipid metabolic reprogramming to mediate the development of brain metastasis in triple negative breast cancer. Mil Med Res. 2023;10:34.

CAS  PubMed  PubMed Central  Google Scholar 

Berrino F, Villarini A, Traina A, Bonanni B, Panico S, Mano MP, Mercandino A, Galasso R, Barbero M, Simeoni M, Bassi MC, Consolaro E, Johansson H, Zarcone M, Bruno E, Gargano G, Venturelli E, Pasanisi P. Metabolic syndrome and breast cancer prognosis. Breast Cancer Res Treat. 2014;147:1

留言 (0)

沒有登入
gif