Study of association between corneal shape parameters and axial length elongation during orthokeratology using image-pro plus software

Jonas JB, Ang M, Cho P, Guggenheim JA, He MG, Jong M, Logan NS, Liu M, Morgan I, Ohno-Matsui K, et al. IMI Prevention of Myopia and its progression. Invest Ophthalmol Vis Sci. 2021;62(5):6.

Article  PubMed  PubMed Central  Google Scholar 

Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, Rose KA. The epidemics of myopia: Aetiology and prevention. Prog Retin Eye Res. 2018;62:134–49.

Article  PubMed  Google Scholar 

Sun J, Zhou J, Zhao P, Lian J, Zhu H, Zhou Y, Sun Y, Wang Y, Zhao L, Wei Y, et al. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Investig Ophthalmol Vis Sci. 2012;53(12):7504–9.

Article  Google Scholar 

Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H, Saw SM, Chen H, Bao F, Zhao Y, et al. Efficacy comparison of 16 interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology. 2016;123(4):697–708.

Article  PubMed  Google Scholar 

Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30(1):71–80.

Article  PubMed  Google Scholar 

Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Investig Ophthalmol Vis Sci. 2012;53(7):3913–9.

Article  Google Scholar 

Lin W, Gu T, Bi H, Du B, Zhang B, Wei R. The treatment zone decentration and corneal refractive profile changes in children undergoing orthokeratology treatment. BMC Ophthalmol. 2022;22(1):177.

Article  PubMed  PubMed Central  Google Scholar 

Chen MF, Liu XT, Zhang F, Wang YL, Mao XJ. The influencing factors and the effect of myopia control in children treated with orthokeratology. Zhonghua Yan Ke Za Zhi. 2022;58(4):259–64.

CAS  PubMed  Google Scholar 

Vincent SJ, Cho P, Chan KY, Fadel D, Ghorbani-Mojarrad N, González-Méijome JM, Johnson L, Kang P, Michaud L, Simard P, et al. CLEAR - orthokeratology. Contact lens Anterior eye: J Br Contact Lens Association. 2021;44(2):240–69.

Article  Google Scholar 

Villa-Collar C, Carracedo G, Chen Z, Gonzalez-Méijome JM. Overnight Orthokeratology: Technology, Efficiency, Safety, and Myopia Control. J Ophthalmol. 2019;2019:2607429.

PubMed  PubMed Central  Google Scholar 

Hiraoka T. Myopia control with Orthokeratology: a review. Eye Contact Lens. 2022;48(3):100–4.

Article  PubMed  Google Scholar 

Guo B, Wu H, Cheung SW, Cho P. Manual and software-based measurements of treatment zone parameters and characteristics in children with slow and fast axial elongation in orthokeratology. Ophthalmic Physiological Optics: J Br Coll Ophthalmic Opticians (Optometrists) 2022.

Yang X, Bi H, Li L, Li S, Chen S, Zhang B, Wang Y. The Effect of relative corneal refractive power shift distribution on axial length growth in myopic children undergoing Orthokeratology Treatment. Curr Eye Res. 2021;46(5):657–65.

Article  CAS  PubMed  Google Scholar 

Hu ZYCZDYYZYH. Effect of eccentricity of overnight orthokeratology lenses on axial growth and visual quality. Int Eye Sci. 2020;20(12):2023–7.

Google Scholar 

Hu Y, Wen C, Li Z, Zhao W, Ding X, Yang X. Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology. Br J Ophthalmol. 2019;103(11):1571–5.

Article  PubMed  Google Scholar 

Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutiérrez-Ortega R. Factors preventing myopia progression with orthokeratology correction. 1538–9235. 2013;90(11):1225–36.

PubMed  Google Scholar 

Mei Y, Tang Z, Li Z, Yang X. Repeatability and Reproducibility of Quantitative Corneal Shape Analysis after Orthokeratology Treatment Using Image-Pro Plus Software. Journal of ophthalmology 2016, 2016:1732476.

Lin W, Li N, Gu T, Tang C, Liu G, Du B, Wei R. The treatment zone size and its decentration influence axial elongation in children with orthokeratology treatment. BMC Ophthalmol. 2021;21(1):362.

Article  PubMed  PubMed Central  Google Scholar 

Pauné J, Fonts S, Rodríguez L, Queirós A. The role of back Optic Zone Diameter in Myopia Control with Orthokeratology lenses. J Clin Med 2021, 10(2).

Hu Y, Yu J, Cui X, Zhang Z, Li Q, Guo W, Zhao C, Chen X, Meng M, Li Y, et al. Combination usage of AdipoCount and Image-Pro Plus/ImageJ Software for quantification of adipocyte sizes. Front Endocrinol (Lausanne). 2021;12:642000.

Article  PubMed  Google Scholar 

Lian KM, Lin T. Value of image-pro plus for assisting virtual touch tissue imaging in the diagnosis of thyroid nodules. Clin Hemorheol Microcirc. 2021;77(2):143–51.

Article  CAS  PubMed  Google Scholar 

Lemmens S, Devulder A, van Keer K, Bierkens J, Boever Pd, Stalmans I. Systematic review on Fractal Dimension of the Retinal vasculature in Neurodegeneration and Stroke: Assessment of a potential biomarker. Front NeuroSci. 2020;14:16.

Article  PubMed  PubMed Central  Google Scholar 

Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen CT, Murgu SD, Vokes EE, Vannier MW, Salgia R. Lung cancer-a fractal viewpoint. Nat Reviews Clin Oncol. 2015;12(11):664–75.

Article  Google Scholar 

Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Investig Ophthalmol Vis Sci. 2011;52(5):2170–4.

Article  Google Scholar 

Zhang Z, Chen Z, Chen Z, Zhou J, Zeng L, Xue F, Qu X, Zhou X. Change in corneal power distribution in Orthokeratology: a predictor for the change in axial length. Transl Vis Sci Technol. 2022;11(2):18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu XL, Lin X, Zhao LH, Cai T, Du XL. Long-term prevention and control effects of orthokeratology lenses designed for small treatment zones on children and adolescents with myopia. Zhonghua Yan Ke Za Zhi. 2023;59(6):444–51.

CAS  PubMed  Google Scholar 

Cho P, Cheung S-W. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Investig Ophthalmol Vis Sci. 2012;53(11):7077–85.

Article  Google Scholar 

Wang D, Wen D, Zhang B, Lin W, Liu G, Du B, Lin F, Li X, Wei R. The Association between Fourier Parameters and clinical parameters in myopic children undergoing Orthokeratology. Curr Eye Res 2021:1–9.

Kang P, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011;88(4):476–82.

Article  PubMed  Google Scholar 

Guo B, Cheung SW, Kojima R, Cho P. One-year results of the variation of Orthokeratology Lens Treatment Zone (VOLTZ) study: a prospective randomised clinical trial. Ophthalmic Physiological Optics: J Br Coll Ophthalmic Opticians (Optometrists). 2021;41(4):702–14.

Article  Google Scholar 

Xu Y, Deng J, Zhang B, Xu X, Cheng T, Wang J, Xiong S, Luan M, Zou H, He X, et al. Higher-order aberrations and their association with axial elongation in highly myopic children and adolescents. Br J Ophthalmol. 2023;107(6):862–8.

Article  PubMed  Google Scholar 

Faria-Ribeiro M, Navarro R, González-Méijome JM. Effect of pupil size on Wavefront Refraction during Orthokeratology. Optom Vis Sci. 2016;93(11):1399–408.

Article  PubMed  Google Scholar 

Hiraoka T, Kakita T, Okamoto F, Oshika T. Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight Orthokeratology. Ophthalmology. 2015;122(1):93–100.

Article  PubMed  Google Scholar 

Hiraoka T, Mihashi T, Okamoto C, Okamoto F, Hirohara Y, Oshika T. Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function. J Cataract Refract Surg. 2009;35(11):1918–26.

Article  PubMed  Google Scholar 

Chen J, Huang W, Zhu R, Jiang J, Li Y. Influence of overnight orthokeratology lens fitting decentration on corneal topography reshaping. Eye Vis (London England). 2018;5:5.

Google Scholar 

Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R, Suzaki A. The effects of entrance pupil centration and coma aberrations on myopic progression following orthokeratology. Clin Experimental Optometry. 2015;98(6):534–40.

Article  Google Scholar 

Chen Z, Niu L, Xue F, Qu X, Zhou Z, Zhou X, Chu R. Impact of pupil diameter on axial growth in orthokeratology. 1538–9235. 2012;89(11):1636–40.

PubMed  Google Scholar 

Downie LE, Lowe R. Corneal reshaping influences myopic prescription stability (CRIMPS): an analysis of the effect of orthokeratology on childhood myopic refractive stability. Eye Contact Lens. 2013;39(4):303–10.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif