Current understanding of circular RNAs in preeclampsia

Espinoza J, Vidaeff A, Pettker CM, Simhan H. ACOG Practice Bulletin No. 202: gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133:e1–e25.

Google Scholar 

Homer CS, Brown MA, Mangos G, Davis GK. Nonproteinuric pre-eclampsia: a novel risk indicator in women with gestational hypertension. J Hypertens. 2008;26:295–302.

Article  CAS  PubMed  Google Scholar 

Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145:1–33.

Article  PubMed  PubMed Central  Google Scholar 

Amaral L, Cunningham MW Jr, Cornelius DC, Lamarca B. Preeclampsia: long-term consequences for vascular health. Vasc Health Risk Manag. 2015;11:403–15.

PubMed  PubMed Central  Google Scholar 

Kumari P, Sampath K. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions. Semin Cell Dev Biol. 2015;47-48:40–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vo JN, Cieslik M, Zhang YJ, Shukla S, Xiao LB, Zhang YP, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013;495:333–38.

Article  CAS  PubMed  Google Scholar 

Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 2014;15:9331–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci. 1976;73:3852–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (delta) virus possesses a circular RNA. Nature. 1986;323:558–60.

Article  CAS  PubMed  Google Scholar 

Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, et al. Scrambled exons. Cell 1991;64:607–13.

Article  CAS  PubMed  Google Scholar 

Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73:1019–30.

Article  CAS  PubMed  Google Scholar 

Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 1992;11:1095–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–60.

Article  CAS  PubMed  Google Scholar 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu JZ, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang XO, Wang HB, Zhang Y, Lu XH, Chen LL, Yang L. Complementary sequence mediated exon circularization. Cell. 2014;159:134–47.

Article  CAS  PubMed  Google Scholar 

Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409.

Article  PubMed  PubMed Central  Google Scholar 

Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, et al. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014;9:1966–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10:170–77.

Article  CAS  PubMed  Google Scholar 

Zhang YS, Zhu M, Zhang X, Dai K, Liang Z, Pan J, et al. Micropeptide vsp21 translated by Reovirus circular RNA 000048 attenuates viral replication. Int J Biol Macromol. 2022;209:1179–87.

Article  CAS  PubMed  Google Scholar 

Zhu M, Liang Z, Pan J, Zhang X, Xue RY, Cao GL, et al. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1. Mol Ther Nucleic Acids. 2021;25:668–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang YM, Zhao YY, Yu FF, Li X, Chen XH, Zhu D, et al. CircRNA_06354 might promote early-onset preeclampsia in humans via hsa-miR-92a-3p/vascular endothelial growth factor-A. J Hypertens. 2023;41:494–507.

Article  CAS  PubMed  Google Scholar 

Zhang YG, Yang HL, Long Y, Li WL. Cicular RNA in blood corpuscles combined with plasmaprotein factor for early pr-ediction of pre-eclampsia. BJOG. 2016;123:2113–18.

Article  CAS  PubMed  Google Scholar 

Qian YT, Lu YQ, Rui C, Qian YJ, Cai MH, Jia RZ. Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 2016;39:1380–90.

Article  CAS  PubMed  Google Scholar 

Hu XP, Ao JP, Li XY, Zhang HJ, Wu J, Cheng W. Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clin Epigenetics. 2018;10:48.

Article  PubMed  PubMed Central  Google Scholar 

Ma B, Zhao HQ, Gong LL, Xiao XR, Zhou QJ, Lu HQ, et al. Differentially expressed circular RNAs and the competing endogenous RNA network associated with preeclampsia. Placenta. 2021;103:232–41.

Article  CAS  PubMed  Google Scholar 

Li XP, Yang R, Xu Y, Zhang YS. Circ_0001438 participates in the pathogenesis of preeclampsia via the circ_0001438/miR-942/NLRP3 regulatory network. Placenta. 2021;104:40–50.

Article  CAS  PubMed  Google Scholar 

Gao X, Qu HN, Zhang Y. Circ_0001326 suppresses trophoblast cell proliferation, invasion, migration and epithelial-mesenchymal transition progression in preeclampsia by miR-188-3p/HtrA serine peptidase 1 axis. J Hypertens. 2023;41:587–96.

Article  CAS  PubMed  Google Scholar 

Hu XM, Xia WL. Circ_0005714/miR-223-3p/ADAM9 regulatory axis affects proliferation, migration, invasion, and angiopoiesis in trophoblast cells. Autoimmunity. 2022;55:640–49.

Article  CAS  PubMed  Google Scholar 

Zhou FM, Liu HX, Zhang RR, Sun YL. Circ_0007121 facilitates trophoblastic cell proliferation, migration, and invasion via the regulation of the miR-421/ZEB1 axis in preeclampsia. Reprod Sci. 2022;29:100–09.

Article  CAS  PubMed  Google Scholar 

Ren JL, Cai J. Circ_0014736 induces GPR4 to regulate the biological behaviors of human placental trophoblast cells through miR-942-5p in preeclampsia. Open Med (Wars). 2023;18:20230645.

Article  CAS  PubMed  Google Scholar 

Hu ZY, Dong CM, Dong Q. Circ_0015382 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-149-5p/TFPI2 axis. Placenta. 2021;108:73–80.

Article  CAS  PubMed  Google Scholar 

Li W, Yu N, Fan L, Chen SH, Wu JL. Circ_0063517 acts as ceRNA, targeting the miR-31-5p-ETBR axis to regulate angiogenesis of vascular endothelial cells in preeclampsia. Life Sci. 2020;244:117306.

Article  CAS  PubMed  Google Scholar 

Zhang LP, Liu MX. Circ_0077109 sponges miR-139-5p and upregulates HOXD10 in trophoblast cells as potential mechanism for preeclampsia progression. Am J Reprod Immunol. 2022;88:e13609.

Article  CAS  PubMed  Google Scholar 

Zhu HL, Niu X, Li QH, Zhao YH, Chen X, Sun HS. Circ_0085296 suppresses trophoblast cell proliferation, invasion, and migration via modulating miR-144/E-cadherin axis. Placenta. 2020;97:18–25.

Article  CAS  PubMed  Google Scholar 

Zhang SQ, Guo GX. Circ_FURIN promotes trophoblast cell proliferation, migration and invasion in preeclampsia by regulating miR-34a-5p and TFAP2A. Hypertens Res. 2022;45:1334–44.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif