A Multi-Element Identification System Based on Deep Learning for the Visual Field of Percutaneous Endoscopic Spine Surgery

Zhang, A. S., Xu, A., Ansari, K., Hardacker, K., Anderson, G., Alsoof, D., & Daniels, A. H. (2023). Lumbar Disc Herniation: Diagnosis and Management. American Journal of Medicine, 136, 645–651. https://doi.org/10.1016/j.amjmed.2023.03.024

Article  PubMed  Google Scholar 

Shen, S. C., Chen, H. C., Tsou, H. K., Lin, R. H., Shih, Y. T., Huang, C. W., Tang, C. L., Chen, H. T., Chang, C. C., & Tzeng, C. Y. (2023). Percutaneous endoscopic lumbar discectomy for L5–S1 disc herniation based on image analysis and clinical findings: A retrospective review of 345 cases. Medicine (Baltimore), 102, e32832. https://doi.org/10.1097/MD.0000000000032832

Article  PubMed  Google Scholar 

Pan, M., Li, Q., Li, S., Mao, H., Meng, B., Zhou, F., & Yang, H. (2020). Percutaneous endoscopic lumbar discectomy: Indications and complications. Pain Physician, 23, 49–56.

CAS  PubMed  Google Scholar 

Cheng, Y. P., Cheng, X. K., & Wu, H. (2022). A comparative study of percutaneous endoscopic interlaminar discectomy and transforaminal discectomy for L5–S1 calcified lumbar disc herniation. BMC Musculoskeletal Disorders, 23, 244. https://doi.org/10.1186/s12891-022-05186-z

Article  PubMed  PubMed Central  Google Scholar 

Ahn, Y., Lee, S., Son, S., Kim, H., & Kim, J. E. (2020). Learning curve for transforaminal percutaneous endoscopic lumbar discectomy: A systematic review. World Neurosurgery, 143, 471–479. https://doi.org/10.1016/j.wneu.2020.08.044

Article  PubMed  Google Scholar 

Ao, S., Wu, J., Tang, Y., Zhang, C., Li, J., Zheng, W., & Zhou, Y. (2019). Percutaneous endoscopic lumbar discectomy assisted by O-arm-based navigation improves the learning curve. BioMed Research International, 2019, 6509409. https://doi.org/10.1155/2019/6509409

Article  PubMed  PubMed Central  Google Scholar 

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18, 500–510. https://doi.org/10.1038/s41568-018-0016-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeh, Y. C., Weng, C. H., Huang, Y. J., Fu, C. J., Tsai, T. T., & Yeh, C. Y. (2021). Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. Science and Reports, 11, 7618. https://doi.org/10.1038/s41598-021-87141-x

Article  CAS  Google Scholar 

Fan, N., Yuan, S., Du, P., Zhu, W., Li, L., Hai, Y., Ding, H., Wang, G., & Zang, L. (2020). Design of a robot-assisted system for transforaminal percutaneous endoscopic lumbar surgeries: Study protocol. Journal of Orthopaedic Surgery and Research, 15, 479. https://doi.org/10.1186/s13018-020-02003-y

Article  PubMed  PubMed Central  Google Scholar 

Hagan, M. J., Remacle, T., Leary, O. P., Feler, J., Shaaya, E., Ali, R., Zheng, B., Bajaj, A., Traupe, E., Kraus, M., et al. (2022). Navigation Techniques in Endoscopic Spine Surgery. BioMed Research International, 2022, 8419739. https://doi.org/10.1155/2022/8419739

Article  PubMed  PubMed Central  Google Scholar 

Fan, N., Yuan, S., Du, P., Wu, Q., Wang, T., Wang, A., Li, J., Kong, X., Zhu, W., & Zang, L. (2021). Complications and risk factors of percutaneous endoscopic transforaminal discectomy in the treatment of lumbar spinal stenosis. BMC Musculoskeletal Disorders, 22, 1041. https://doi.org/10.1186/s12891-021-04940-z

Article  PubMed  PubMed Central  Google Scholar 

Fan, G., Liu, H., Wang, D., Feng, C., Li, Y., Yin, B., Zhou, Z., Gu, X., Zhang, H., Lu, Y., et al. (2020). Deep learning-based lumbosacral reconstruction for difficulty prediction of percutaneous endoscopic transforaminal discectomy at L5/S1 level: A retrospective cohort study. International Journal of Surgery, 82, 162–169. https://doi.org/10.1016/j.ijsu.2020.08.036

Article  PubMed  Google Scholar 

Cui, P., Shu, T., Lei, J., & Chen, W. (2021). Nerve recognition in percutaneous transforaminal endoscopic discectomy using convolutional neural network. Medical Physics, 48, 2279–2288. https://doi.org/10.1002/mp.14822

Article  PubMed  Google Scholar 

Cho, S. M., Kim, Y. G., Jeong, J., Kim, I., Lee, H. J., & Kim, N. (2021). Automatic tip detection of surgical instruments in biportal endoscopic spine surgery. Computers in Biology and Medicine, 133, 104384. https://doi.org/10.1016/j.compbiomed.2021.104384

Article  PubMed  Google Scholar 

Lokhande, P. V. (2023). Full endoscopic spine surgery. Journal of Orthopaedics, 40, 74–82. https://doi.org/10.1016/j.jor.2023.04.010

Article  PubMed  Google Scholar 

Zhang, Y., Chu, J., Leng, L., & Miao, J. (2020). Mask-refined R-CNN: a network for refining object details in instance segmentation. Sensors (Basel). https://doi.org/10.3390/s20041010

Article  PubMed  PubMed Central  Google Scholar 

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2020). Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 386–397. https://doi.org/10.1109/TPAMI.2018.2844175

Article  PubMed  Google Scholar 

Wang, N., Zhang, J., & Song, X. (2023). A pipeline defect instance segmentation system based on SparseInst. Sensors (Basel). https://doi.org/10.3390/s23229019

Article  PubMed  PubMed Central  Google Scholar 

Bolya, D., Zhou, C., Xiao, F., & Lee, Y. J. (2022). YOLACT++ better real-time instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1108–1121. https://doi.org/10.1109/TPAMI.2020.3014297

Article  PubMed  Google Scholar 

Yu, Z., Liu, L., Jiao, H., Chen, J., Chen, Z., Song, Z., Lin, H., & Tian, F. (2022). Leveraging SOLOv2 model to detect heat stress of poultry in complex environments. Frontiers in Veterinary Science, 9, 1062559. https://doi.org/10.3389/fvets.2022.1062559

Article  PubMed  Google Scholar 

Alaeddine, H., & Jihene, M. (2021). Deep residual network in network. Computational Intelligence and Neuroscience, 2021, 6659083. https://doi.org/10.1155/2021/6659083

Article  PubMed  PubMed Central  Google Scholar 

Reiner, A. J., Hollands, J. G., & Jamieson, G. A. (2017). Target detection and identification performance using an automatic target detection system. Human Factors, 59, 242–258. https://doi.org/10.1177/0018720816670768

Article  PubMed  Google Scholar 

Zarvani, M., Saberi, S., Azmi, R., & Shojaedini, S. V. (2021). Residual learning: a new paradigm to improve deep learning-based segmentation of the left ventricle in magnetic resonance imaging cardiac images. Journal of Medical Signals and Sensors, 11, 159–168. https://doi.org/10.4103/jmss.JMSS_38_20

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif