An Automated Deep Learning-Based Framework for Uptake Segmentation and Classification on PSMA PET/CT Imaging of Patients with Prostate Cancer

Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer Incidence and Mortality Rates and Trends—An Update Global Cancer Rates and Trends—An Update. Cancer Epidemiol Biomarkers Prev. 2016; 25:16-27. https://doi.org/10.1158/1055-9965.EPI-15-0578.

Article  PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71:209-249. https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

Li M, Zelchan R, Orlova A. The Performance of FDA-Approved PET Imaging Agents in the Detection of Prostate Cancer. Biomedicines. 2022;10(10), 2533. https://doi.org/10.3390/biomedicines10102533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voter AF, Werner RA, Pienta KJ, et al. Piflufolastat F-18 (18F-DCFPyL) for PSMA PET imaging in prostate cancer. Expert Rev Anticancer Ther. 2022; 22:681-694. https://doi.org/10.1080/14737140.2022.2081155.

Article  CAS  PubMed  Google Scholar 

Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020; 395:1208-1216. https://doi.org/10.1016/S0140-6736(20)30314-7.

Article  CAS  PubMed  Google Scholar 

An S, Huang G, Liu J, Wei W. PSMA-targeted theranostics of solid tumors: applications beyond prostate cancers. Eur J Nucl Med Mol Imaging. 2022; 49:3973-3976. https://doi.org/10.1007/s00259-022-05905-7.

Article  PubMed  Google Scholar 

Werner RA, Habacha B, Lütje S, et al. High SUVs have more robust repeatability in patients with metastatic prostate cancer: Results from a prospective test-retest cohort imaged with 18F-DCFPyL. Mol Imaging. 2022; 2022:7056983. https://doi.org/10.1155/2022/7056983.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gafita A, Bieth M, Krönke M, et al. qPSMA: Semiautomatic Software for Whole-Body Tumor Burden Assessment in Prostate Cancer Using 68Ga-PSMA11 PET/CT. J Nucl Med. 2019;60:1277-1283. https://doi.org/10.2967/jnumed.118.224055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim M, Seifert R, Fragemann J, et al. Evaluation of thresholding methods for the quantification of [68Ga] Ga-PSMA-11 PET molecular tumor volume and their effect on survival prediction in patients with advanced prostate cancer undergoing [177Lu]Lu-PSMA-617 radioligand therapy. Eur J Nucl Med Mol Imaging. 2023, 50(7), 2196–2209. https://doi.org/10.1007/s00259-023-06163-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karimi D, Dou H, Warfield SK, Gholipour A. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med Image Anal. 2020; 65:101759. https://doi.org/10.1016/j.media.2020.101759.

Article  PubMed  PubMed Central  Google Scholar 

Budd S, Robinson EC, Kainz B. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med Image Anal. 2021; 71:102062. https://doi.org/10.1016/j.media.2021.102062.

Article  PubMed  Google Scholar 

Jin W, Li X, Fatehi M, Hamarneh G. Guidelines and evaluation of clinical explainable AI in medical image analysis. Med Image Anal. 2023; 84:102684. https://doi.org/10.1016/j.media.2022.102684.

Article  PubMed  Google Scholar 

Kshatri SS, Singh D. Convolutional Neural Network in Medical Image Analysis: A Review. Arch Comput Methods Eng. 2023; 30:2793-2810. https://doi.org/10.1007/s11831-023-09898-w.

Article  Google Scholar 

Salpea N, Tzouveli P, Kollias D. Medical Image Segmentation: A Review of Modern Architectures. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_47.

Kendrick J, Francis R J, Hassan G M, et al. Fully automatic prognostic biomarker extraction from metastatic prostate lesion segmentations in whole-body [68Ga] Ga-PSMA-11 PET/CT images. Eur J Nucl Med Mol Imaging. 2020, 50(1), 67-79. https://doi.org/10.1007/s00259-022-05927-1.

Article  CAS  Google Scholar 

Sibille L, Seifert R, Avramovic N, et al. 18F-FDG PET/CT Uptake Classification in Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks. Radiology. 2020; 294:445-452. https://doi.org/10.1148/radiol.2019191114.

Article  PubMed  Google Scholar 

Yixi X, Ivan K, Sara H, et al. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss. Computers in Biology and Medicine. 2023;158:106882. https://doi.org/10.1016/j.compbiomed.2023.106882.

Lindgren Belal S, Frantz S, Minarik D, et al. Applications of Artificial Intelligence in PSMA PET/CT for Prostate Cancer Imaging. Semin Nucl Med. 2023;S0001-2998(23)00049-1. https://doi.org/10.1053/j.semnuclmed.2023.06.001.

Article  Google Scholar 

Mena E, Rowe SP, Shih JH, et al. Predictors of 18F-DCFPyL PET/CT Positivity in Patients with Biochemical Recurrence of Prostate Cancer After Local Therapy. J Nucl Med. 2022; 63:1184-1190. https://doi.org/10.2967/jnumed.121.262347.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werner RA, Derlin T, Lapa C, et al. 18F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics. 2020; 10:1-16. https://doi.org/10.7150/thno.37894.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rowe SP, Buck A, Bundschuh RA, et al. [18F] DCFPyL PET/CT for imaging of prostate cancer. Nuklearmedizin. 2022; 61:240-246. https://doi.org/10.1055/a-1659-0010.

Article  PubMed  Google Scholar 

Yechiel Y, Orr Y, Gurevich K, Gill R, Keidar Z. Advanced PSMA-PET/CT Imaging Parameters in Newly Diagnosed Prostate Cancer Patients for Predicting Metastatic Disease. Cancers. 2023;15(4):1020. https://doi.org/10.3390/cancers15041020.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017;30. https://doi.org/10.48550/arXiv.1706.03762.

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:11929 2020. https://doi.org/10.48550/arXiv.2010.11929.

Hatamizadeh A, Tang Y, Nath V, et al. UNETR: Transformers for 3D Medical Image Segmentation. Proceedings of the IEEE/CVF winter conference on applications of computer vision; 2022. p. 574-84. https://doi.org/10.48550/arXiv.2103.10504.

Schmidkonz C, Cordes M, Schmidt D, et al. 68Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur J Nucl Med Mol Imaging. 2018; 45:1862-1872. https://doi.org/10.1007/s00259-018-4042-z.

Article  PubMed  Google Scholar 

Schmuck S, von Klot CA, Henkenberens C, et al. Initial experience with volumetric 68Ga-PSMA I&T PET/CT for assessment of whole-body tumor burden as a quantitative imaging biomarker in patients with prostate cancer. J Nucl Med. 2017; 58:1962-1968. https://doi.org/10.2967/jnumed.117.193581.

Article  CAS  PubMed  Google Scholar 

Gul S, Khan MS, Bibi A, Khandakar A, Ayari MA, Chowdhury MEH. Deep learning techniques for liver and liver tumor segmentation: A review. Comput Biol Med. 2022; 147:105620. https://doi.org/10.1016/j.compbiomed.2022.105620.

Article  PubMed  Google Scholar 

Mohammed YMA, El Garouani S, Jellouli I. A survey of methods for brain tumor segmentation-based MRI images. Finite Elem Anal Des. 2023; 10:266-293. https://doi.org/10.1093/jcde/qwac141.

Article  Google Scholar 

Park J, Kang SK, Hwang D, et al. Automatic Lung Cancer Segmentation in [18F] FDG PET/CT Using a Two-Stage Deep Learning Approach. Nucl Med Mol Imaging. 2023; 57:86-93. https://doi.org/10.1007/s13139-022-00745-7.

Article  CAS  PubMed  Google Scholar 

Seifert R, Herrmann K, Kleesiek J, et al. Semiautomatically Quantified Tumor Volume Using 68Ga-PSMA-11 PET as a Biomarker for Survival in Patients with Advanced Prostate Cancer. J Nucl Med. 2020; 61(12):1786-1792. https://doi.org/10.2967/jnumed.120.242057.

Article  CAS  PubMed  Google Scholar 

Johnsson K, Brynolfsson J, Sahlstedt H, et al. Analytical performance of aPROMISE: automated anatomic contextualization, detection, and quantification of [18F] DCFPyL (PSMA) imaging for standardized reporting. Eur J Nucl Med Mol Imaging. 2022; 49:1041-1051. https://doi.org/10.1007/s00259-021-05497-8.

Article  PubMed  Google Scholar 

Nickols N, Anand A, Johnsson K, et al. aPROMISE: A Novel Automated PROMISE Platform to Standardize Evaluation of Tumor Burden in 18F-DCFPyL Images of Veterans with Prostate Cancer. J Nucl Med. 2022; 63:233-239. https://doi.org/10.2967/jnumed.120.261863.

Article  CAS  PubMed  Google Scholar 

Kendrick J, Francis RJ, Hassan GM. et al. Prognostic utility of RECIP 1.0 with manual and AI-based segmentations in biochemically recurrent prostate cancer from [68Ga] Ga-PSMA-11 PET images. Eur J Nucl Med Mol Imaging. 2023;50:4077-86. https://doi.org/10.1007/s00259-023-06382-2.

36. Capobianco N, Sibille L, Chantadisai M, et al. Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning. Eur J Nucl Med Mol Imaging. 2022; 49:517-526. https://doi.org/10.1007/s00259-021-05473-2.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif