Automated Pulmonary Tuberculosis Severity Assessment on Chest X-rays

World Health Organization. Global Tuberculosis Report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.

Ryu YJ. Diagnosis of Pulmonary Tuberculosis: Recent Advances and Diagnostic Algorithms. Tuberc Respir Dis (Seoul). 2015;78(2):64–71.

Article  PubMed  PubMed Central  Google Scholar 

Leylabadlo HE, Kafil HS, Yousefi M, Aghazadeh M, Asgharzadeh M. Pulmonary Tuberculosis Diagnosis: Where We Are? Tuberc Respir Dis (Seoul). 2016;79(3):134–142.

Article  PubMed  PubMed Central  Google Scholar 

MacLean E, Kohli M, Weber SF, Suresh A, Schumacher SG, Denkinger CM, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol. 2020;58(10):e01582–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep. 2019;18(1):15000.

Article  Google Scholar 

Khan FA, Majidulla A, Tavaziva G, Nazish A, Abidi SK, Benedetti A, et al. Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease. Lancet Digit Health. 2020;2(11):e573–e581.

Article  PubMed  Google Scholar 

Qin ZZ, Ahmed S, Sarker MS, Paul K, Adel ASS, Naheyan T, et al. Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. Lancet Digit Health. 2021;3(9):e543–e554.

Article  CAS  PubMed  Google Scholar 

Monitoring treatment response. In: Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis; 2014. p. 139–144.

Ralph AP, Ardian M, Wiguna A, Maguire GP, Becker NG, Drogumuller G, et al. A simple, valid, numerical score for grading chest x-ray severity in adult smear-positive pulmonary tuberculosis. Thorax. 2010;65(10):863–869.

Article  PubMed  Google Scholar 

Kriel M, Lotz JW, Kidd M, Walzl G. Evaluation of a radiological severity score to predict treatment outcome in adults with pulmonary tuberculosis. Int J Tuberc Lung Dis. 2015;19(11):1354–1360.

Article  CAS  PubMed  Google Scholar 

Thiel B, Bark C, Nakibali J, Van Der Kuyp F, Johnson J. Reader variability and validation of the Timika X-ray score during treatment of pulmonary tuberculosis. The International Journal of Tuberculosis and Lung Disease. 2016;20(10):1358–1363.

Article  CAS  PubMed  Google Scholar 

Chakraborthy A, Shivananjaiah AJ, Ramaswamy S, Chikkavenkatappa N. Chest X ray score (Timika score): an useful adjunct to predict treatment outcome in tuberculosis. Advances in respiratory medicine. 2018;86(5):205–210.

Article  PubMed  Google Scholar 

Kornfeld H, Sahukar SB, Procter-Gray E, Kumar NP, West K, Kane K, et al. Impact of Diabetes and Low Body Mass Index on Tuberculosis Treatment Outcomes. Clin Infect Dis. 2020;71(9):e392–e398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnamoorthy Y, Knudsen S, Rajaa S, Lakshminarayanan S, Senbagavalli P, Ellner J, et al. Accuracy of Timika X-ray scoring system to predict the treatment outcomes among tuberculosis patients in India. Indian Journal of Tuberculosis. 2022;69(4):476–481.

Article  PubMed  Google Scholar 

Rosenfeld G, Gabrielian A, Hurt D, Rosenthal A. Predictive capabilities of baseline radiological findings for early and late disease outcomes within sensitive and multi-drug resistant tuberculosis cases. Eur J Radiol Open. 2023;11(100518).

Edwardsson S, Rizzoli A.: COVID-19 xray dataset. Last accessed July 2023. Available from: https://github.com/v7labs/covid-19-xray-dataset.

Liu Y, Wu YH, Ban Y, Wang H, Cheng MM. Rethinking computer-aided tuberculosis diagnosis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2020. p. 2646–2655.

Rosenthal A, Gabrielian A, Engle E, Hurt DE, Alexandru S, Crudu V, et al. The TB portals: an open-access, web-based platform for global drug-resistant-tuberculosis data sharing and analysis. Journal of Clinical Microbiology. 2017;55(11):3267–3282.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems. 2019;32.

Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, et al. MONAI: An open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701. 2022;.

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer; 2015. p. 234–241.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778.

Jocher G, Chaurasia A, Stoken A, et al.: YOLOv5 by Ultralytics.

Huang G, Liu Z, Weinberger KQ. Densely Connected Convolutional Networks. CoRR. 2016;abs/1608.06993.

Karki M, Kantipudi K, Yu H, Yang F, Kassim YM, Yaniv Z, et al. Identifying drug-resistant tuberculosis in chest radiographs: Evaluation of CNN architectures and training strategies. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2021. p. 2964–2967.

Karki M, Kantipudi K, Yang F, Yu H, Wang YXJ, Yaniv Z, et al. Generalization Challenges in Drug-Resistant Tuberculosis Detection from Chest X-rays. Diagnostics. 2022;12(1):188.

Article  PubMed  PubMed Central  Google Scholar 

Abdi H, et al. Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of measurement and statistics. 2007;3(01):2007.

Google Scholar 

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: IEEE International Conference on Computer Vision, ICCV; 2017. p. 618–626.

Çalli E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: A survey. Medical Image Anal. 2021;72:102125.

Article  Google Scholar 

Samala RK, Hadjiiski L, Chan HP, Zhou C, Stojanovska J, Agarwal P, et al. Severity assessment of COVID-19 using imaging descriptors: a deep-learning transfer learning approach from non-COVID-19 pneumonia. In: SPIE Medical Imaging: Computer-Aided Diagnosis; 2021. p. 115971T.

Li MD, Arun NT, Gidwani M, Chang K, Deng F, Little BP, et al. Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs Using Convolutional Siamese Neural Networks. Radiology: Artificial Intelligence. 2020;2(4):e200079.

Zhu J, Shen B, Abbasi A, Hoshmand-Kochi M, Li H, Duong TQ. Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs. PLoS One. 2020;15(7):e0236621.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandra TB, Singh BK, Jain D. Disease Localization and Severity Assessment in Chest X-Ray Images using Multi-Stage Superpixels Classification. Computer Methods and Programs in Biomedicine. 2022;222:106947.

Article  PubMed  PubMed Central  Google Scholar 

Sharma A, Mishra PK. Covid-MANet: Multi-task attention network for explainable diagnosis and severity assessment of COVID-19 from CXR images. Pattern Recognition. 2022;131:108826.

Article  PubMed  PubMed Central  Google Scholar 

Cavitary tuberculosis: the gateway of disease transmission. The Lancet Infectious Diseases. 2020;20(6):e117–e128.

Gaál G, Maga B, Lukács A. Attention U-Net Based Adversarial Architectures for Chest X-ray Lung Segmentation information. In: Proceedings of the Workshop on Applied Deep Generative Networks, 24th European Conference on Artificial Intelligence (ECAI; 2020. .

Souza JC, Diniz JOB, Ferreira JL, da Silva GLF, Silva AC, de Paiva AC. An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks. Comput Methods Programs Biomed. 2019;177:285–296.

Article  PubMed  Google Scholar 

E L, Zhao B, Guo Y, Zheng C, Zhang M, Lin J, et al. Using deep-learning techniques for pulmonary-thoracic segmentations and improvement of pneumonia diagnosis in pediatric chest radiographs. Pediatr Pulmonol. 2020;54(10):1617–1626.

Nash M, Kadavigere R, Andrade J, Sukumar CA, Chawla K, Shenoy VP, et al. Deep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in India. Scientific reports. 2020;10(1):210.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker A, Blüthgen C, Sekaggya-Wiltshire C, Castelnuovo B, Kambugu A, Fehr J, et al. Detection of tuberculosis patterns in digital photographs of chest X-ray images using Deep Learning: feasibility study. The International Journal of Tuberculosis and Lung Disease. 2018;22(3):328–335.

Article  CAS  PubMed  Google Scholar 

Bochkovskiy A, Wang CY, Liao HYM.: YOLOv4: Optimal Speed and Accuracy of Object Detection.

Nachiappan AC, Rahbar K, Shi X, Guy ES, Mortani Barbosa EJ, Shroff GS, et al. Pulmonary Tuberculosis: Role of Radiology in Diagnosis and Management. RadioGraphics. 2017;37(1):52–72.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif