Modulation of lncRNA NEAT1 overturns the macrophages based immune response in M. tuberculosis infected patients via miR-373 regulation

Carrigy NB, Larsen SE, Reese V, Pecor T, Harrison M, Kuehl PJ, Hatfull GF, Sauvageau D, Baldwin SL, Finlay WH, Coler RN (2019) Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29. Antimicrob Agents Chemother 63(12):10–128

Article  Google Scholar 

Che F, Ye X, Wang Y, Ma S, Wang X (2020) Lnc NEAT1/miR-29b-3p/Sp1 form a positive feedback loop and modulate bortezomib resistance in human multiple myeloma cells. Eur J Pharmacol 27(891):173752

Google Scholar 

Chowdhury IH, Ahmed AM, Choudhuri S, Sen A, Hazra A, Pal NK, Bhattacharya B, Bahar B (2014) Alteration of serum inflammatory cytokines in active pulmonary tuberculosis following anti-tuberculosis drug therapy. Mol Immunol 62(1):159–168

Article  CAS  PubMed  Google Scholar 

Desalegn G, Tsegaye A, Gebreegziabiher D et al (2019) Enhanced IFN-γ, but not IL-2, response to Mycobacterium tuberculosis antigens in HIV/latent TB co-infected patients on long-term HAART. BMC Immunol 20(1):35

Article  PubMed  PubMed Central  Google Scholar 

Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, Furin J, Nardell EA, London L, Lessem E, Theron G (2017) The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 5(4):291–360

Article  Google Scholar 

Huang Z, Su R, Yao F et al (2018a) Circulating circular RNAs hsa_circ_0001204 and hsa_circ_0001747 act as diagnostic biomarkers for active tuberculosis detection[J]. Int J Clin Exp Pathol 11(2):586

PubMed  PubMed Central  Google Scholar 

Huang L, Nazarova EV, Tan S et al (2018b) Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med 215(4):1135–1152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi L, Chelluri LK, Valluri V et al (2018) Association of TNF-α, IL-10 and IL-6 promoter polymorphisms in pulmonary tuberculosis patients and their household contacts of younger age group[J]. Comp Immunol Microbiol Infect Dis 56:20–26

Article  PubMed  Google Scholar 

Kaufmann SH, Dorhoi A (2013) Inflammation in tuberculosis: interactions, imbalances and interventions. Curr Opin Immunol 25(4):441–449

Article  CAS  PubMed  Google Scholar 

Kumar NP, Gopinath V, Sridhar R, Hanna LE, Banurekha VV, Jawahar MS, Nutman TB, Babu S (2013) IL-10 dependent suppression of type 1, type 2 and type 17 cytokines in active pulmonary tuberculosis. PLoS One 8(3):e59572

Article  PubMed  PubMed Central  Google Scholar 

Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, Keane J, Lewinsohn DA, Loeffler AM, Mazurek GH, O’Brien RJ (2017) Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis 64(2):e1-33.e (lancet Respiratory medicine. 2017 Apr 1;5(4):291-360)

Article  PubMed  Google Scholar 

Liu CH, Liu H, Ge B (2017) Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 14(12):963–975

Article  CAS  PubMed  PubMed Central  Google Scholar 

Losada PX, Perdomo-Celis F, Castro M et al (2020) Locally-secreted interleukin-6 is related with radiological severity in smear-negative pulmonary tuberculosis [J]. Cytokine 127:154950

Article  CAS  PubMed  Google Scholar 

Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE (2004) Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 173(1):494–506

Article  CAS  PubMed  Google Scholar 

Ming X, Duan W, Yi W (2019) Long non-coding RNA NEAT1 predicts elevated chronic obstructive pulmonary disease (COPD) susceptibility and acute exacerbation risk, and correlates with higher disease severity, inflammation, and lower miR-193a in COPD patients. Int J Clin Exp Pathol 12(8):2837

CAS  PubMed  PubMed Central  Google Scholar 

Tu Y, Ma T, Wen T et al (2020) MicroRNA-377–3p alleviates IL-1β-caused chondrocyte apoptosis and cartilage degradation in osteoarthritis in part by downregulating ITGA6[J]. Biochem Biophys Res Commun 523(1):46–53

Article  CAS  PubMed  Google Scholar 

VanderVen BC, Huang L, Rohde KH, Russell DG (2016) The minimal unit of infection: Mycobacterium tuberculosis in the macrophage. Microbiol Spectr 4(6):10–128

Article  Google Scholar 

Vilchèze C, Jacobs WR Jr (2019) The isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosis. J Mol Biol 431(18):3450–3461

Article  PubMed  PubMed Central  Google Scholar 

Xie Y, He S, Wang J (2018) MicroRNA-373 facilitates HSV-1 replication through suppression of type I IFN response by targeting IRF1. Biomed Pharmacother 1(97):1409–1416

Article  Google Scholar 

Yan K, Fu Y, Zhu N et al (2019) Repression of lncRNA NEAT1 enhances the antitumor activity of CD8+ T cells against hepatocellular carcinoma via regulating miR-155/Tim-3[J]. Int J Biochem Cell Biol 110:1–8

Article  CAS  PubMed  Google Scholar 

Yan X, Li F, Maixner DW, Yadav R, Gao M, Ali MW, Hooks SB, Weng HR (2019) Interleukin-1beta released by microglia initiates the enhanced glutamatergic activity in the spinal dorsal horn during paclitaxel-associated acute pain syndrome. Glia 67(3):482–97

Article  PubMed  Google Scholar 

Yoon JW, Jun HS, Santamaria P (1998) Cellular and molecular mechanisms for the initiation and progression of β cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity 27(2):109–122

Article  CAS  PubMed  Google Scholar 

Zhang P, Cao L, Zhou R et al (2019) The lncRNA Neat1 promotes activation of inflammasomes in macrophages[J]. Nat Commun 10(1):1–17

Google Scholar 

留言 (0)

沒有登入
gif