Impact of osteoporosis and osteoporosis medications on fracture healing: a narrative review

Johansson H, Siggeirsdóttir K, Harvey NC, Odén A, Gudnason V, McCloskey E et al (2017) Imminent risk of fracture after fracture. Osteoporos Int 28(3):775–780

Article  CAS  PubMed  Google Scholar 

Mills LA, Aitken SA, Simpson AHRW (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop 88(4):434–439

Article  PubMed  PubMed Central  Google Scholar 

Kanakaris NK, Giannoudis PV (2007) The health economics of the treatment of long-bone non-unions. Injury 38(Suppl 2):S77-84

Article  PubMed  Google Scholar 

Antonova E, Le TK, Burge R, Mershon J (2013) Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord 14:42

Article  PubMed  PubMed Central  Google Scholar 

Yeo JH, Kim JY (2018) Surgical strategy for scaphoid nonunion treatment. J Hand Surg Asian-Pac Vol 23(4):450–462

Article  PubMed  Google Scholar 

Sinnott B, Ray C, Weaver F, Gonzalez B, Chu E, Premji S et al (2022) Risk factors and consequences of lower extremity fracture nonunions in veterans with spinal cord injury. JBMR Plus 6(3):e10595

Article  PubMed  PubMed Central  Google Scholar 

Kostenuik P, Mirza FM (2017) Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res 35(2):213–223

Article  PubMed  Google Scholar 

Baker CE, Moore-Lotridge SN, Hysong AA, Posey SL, Robinette JP, Blum DM et al (2018) Bone fracture acute phase response-a unifying theory of fracture repair: clinical and scientific implications. Clin Rev Bone Min Metab 16(4):142–158

Article  Google Scholar 

Park SH, Silva M, Bahk WJ, McKellop H, Lieberman JR (2002) Effect of repeated irrigation and debridement on fracture healing in an animal model. J Orthop Res 20(6):1197–1204

Article  PubMed  Google Scholar 

Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A (2006) Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 281(41):31079–31092

Article  CAS  PubMed  Google Scholar 

Trueta J, Amato VP (1960) The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg Br 42-B:571–87

Article  CAS  PubMed  Google Scholar 

Cui L, Houston DA, Farquharson C, MacRae VE (2016) Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 87:147–158

Article  CAS  PubMed  Google Scholar 

Yu YY, Lieu S, Lu C, Miclau T, Marcucio RS, Colnot C (2010) Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone 46(3):841–851

Article  CAS  PubMed  Google Scholar 

Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B (2014) Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet 10(12):e1004820

Article  PubMed  PubMed Central  Google Scholar 

Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628

Article  CAS  PubMed  Google Scholar 

Gerstenfeld LC, Cruceta J, Shea CM, Sampath K, Barnes GL, Einhorn TA (2002) Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells. J Bone Miner Res 17(2):221–230

Article  CAS  PubMed  Google Scholar 

Deckers MML, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE et al (2002) Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143(4):1545–1553

Article  CAS  PubMed  Google Scholar 

Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 84(8):1093–110

Article  PubMed  Google Scholar 

Fazzalari NL (2011) Bone fracture and bone fracture repair. Osteoporos Int 22(6):2003–2006

Article  CAS  PubMed  Google Scholar 

McDonald MM, Dulai S, Godfrey C, Amanat N, Sztynda T, Little DG (2008) Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone 43(4):653–662

Article  CAS  PubMed  Google Scholar 

Ulrich-Vinther M, Andreassen TT (2005) Osteoprotegerin treatment impairs remodeling and apparent material properties of callus tissue without influencing structural fracture strength. Calcif Tissue Int 76(4):280–286

Article  CAS  PubMed  Google Scholar 

Ulrich-Vinther M, Schwarz EM, Pedersen FS, Søballe K, Andreassen TT (2005) Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties. Bone 37(6):751–758

Article  CAS  PubMed  Google Scholar 

Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11-25

Article  PubMed  Google Scholar 

Fleisch H (2001) Can bisphosphonates be given to patients with fractures? J Bone Miner Res 16(3):437–440

Article  CAS  PubMed  Google Scholar 

Yuasa M, Mignemi NA, Barnett JV, Cates JMM, Nyman JS, Okawa A et al (2014) The temporal and spatial development of vascularity in a healing displaced fracture. Bone 67:208–221

Article  PubMed  Google Scholar 

Corrales LA, Morshed S, Bhandari M, Miclau T (2008) Variability in the assessment of fracture-healing in orthopaedic trauma studies. J Bone Joint Surg Am 90(9):1862–1868

Article  PubMed  PubMed Central  Google Scholar 

Panjabi MM, Walter SD, Karuda M, White AA, Lawson JP (1985) Correlations of radiographic analysis of healing fractures with strength: a statistical analysis of experimental osteotomies. J Orthop Res 3(2):212–218

Article  CAS  PubMed  Google Scholar 

Sano H, Uhthoff HK, Backman DS, Yeadon A (1999) Correlation of radiographic measurements with biomechanical test results. Clin Orthop Relat Res 368:271–278

Article  Google Scholar 

Whelan DB, Bhandari M, Stephen D, Kreder H, McKee MD, Zdero R et al (2010) Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma 68(3):629–632

PubMed  Google Scholar 

Chiavaras MM, Bains S, Choudur H, Parasu N, Jacobson J, Ayeni O et al (2013) The Radiographic Union Score for Hip (RUSH): the use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skeletal Radiol 42(8):1079–1088

Article  PubMed  Google Scholar 

Patel SP, Anthony SG, Zurakowski D, Didolkar MM, Kim PS, Wu JS et al (2014) Radiographic scoring system to evaluate union of distal radius fractures. J Hand Surg [Am] 39(8):1471–1479

Article  Google Scholar 

Fisher JS, Kazam JJ, Fufa D, Bartolotta RJ (2019) Radiologic evaluation of fracture healing. Skeletal Radiol 48(3):349–361

Article  PubMed  Google Scholar 

Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R et al (2014) Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45(Suppl 2):S3-7

Article  PubMed  Google Scholar 

Frölke JPM, Patka P (2007) Definition and classification of fracture non-unions. Injury 38(Suppl 2):S19-22

Article  PubMed  Google Scholar 

Grigoryan M, Lynch JA, Fierlinger AL, Guermazi A, Fan B, MacLean DB et al (2003) Quantitative and qualitative assessment of closed fracture healing using computed tomography and conventional radiography. Acad Radiol 10(11):1267–1273

Article  PubMed  Google Scholar 

Nicholson JA, Clement ND, Clelland AD, MacDonald D, Simpson AHRW, Robinson CM (2020) Displaced midshaft clavicle fracture union can be accurately predicted with a delayed assessment at 6 weeks following injury: a prospective cohort study. J Bone Joint Surg Am 102(7):557–566

Article  PubMed  Google Scholar 

Oliver WM, Smith TJ, Nicholson JA, Molyneux SG, White TO, Clement ND et al (2019) The Radiographic Union Score for HUmeral fractures (RUSHU) predicts humeral shaft nonunion. Bone Joint J 101-B(10):1300–6

Article  PubMed  Google Scholar 

Dekker AP, Chuttha S, Tambe AA, Clark DI (2021) Predicting the behavior of humeral shaft fractures: an independent validation study of the Radiographic Union Score for HUmeral Fractures and value of assessing fracture mobility. J Orthop Trauma 35(10):555–559

留言 (0)

沒有登入
gif