Application of deep learning on mammographies to discriminate between low and high-risk DCIS for patient participation in active surveillance trials

Cancer Research UK. (2017). [Online]. Available: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-in-situ.

Kankerbestrijding KWF. Incidentie- en overlevingscijfers: Nederlandse Kankerregistratie, februari 2016. [Online]. Available: https://www.kwf.nl/kanker/borstkanker.

Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer. 2005. https://doi.org/10.1002/cncr.21069.

Erbas B, Provenzano E, Armes J, Gertig D. The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat. 2006;97(2):135–44. https://doi.org/10.1007/s10549-005-9101-z.

Article  PubMed  Google Scholar 

Allred DC. Ductal carcinoma in situ: terminology, classification, and natural history. J Natl Cancer Inst Monogr. 2010. https://doi.org/10.1093/jncimonographs/lgq035.

Article  PubMed  PubMed Central  Google Scholar 

Ryser MD, et al. Cancer outcomes in DCIS patients without Locoregional Treatment. JNCI: J Natl Cancer Inst. 2019;111:1–9. https://doi.org/10.1093/jnci/djy220.

Article  Google Scholar 

Stomper PC, Connolly JL, Meyer JE, Harris JR. Clinically occult ductal carcinoma in situ detected with mammography: analysis of 100 cases with radiologic-pathologic correlation. Radiology. 1989;172(1):235–41. https://doi.org/10.1148/radiology.172.1.2544922.

Article  CAS  PubMed  Google Scholar 

Ikeda DM, Andersson I. Ductal carcinoma in situ: atypical mammographic appearances. Radiology. 1989;172(3):661–6. https://doi.org/10.1148/radiology.172.3.2549563.

Article  CAS  PubMed  Google Scholar 

Dershaw DD, Abramson A, Kinne DW. Ductal carcinoma in situ: mammographic findings and clinical implications. Radiology. 1989;170(2):411–5. https://doi.org/10.1148/radiology.170.2.2536185.

Article  CAS  PubMed  Google Scholar 

Barreau B, et al. Mammography of ductal carcinoma in situ of the breast: review of 909 cases with radiographic-pathologic correlations. Eur J Radiol. 2005;54(1):55–61. https://doi.org/10.1016/j.ejrad.2004.11.019.

Article  PubMed  Google Scholar 

Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence., N Engl J Med, 367, 21, 1998–2005, 2012, https://doi.org/10.1056/NEJMoa1206809.

Esserman LJ, Thompson IM, Reid B. Overdiagnosis and overtreatment in cancer: an opportunity for improvement., JAMA, 310, 8, 797–8, 2013, https://doi.org/10.1001/jama.2013.108415.

Hwang ES, et al. The COMET (comparison of Operative versus Monitoring and Endocrine Therapy) trial: a phase III randomised controlled clinical trial for low-risk ductal carcinoma in situ (DCIS). BMJ Open. 2019;9(3):e026797. https://doi.org/10.1136/bmjopen-2018-026797.

Article  PubMed  PubMed Central  Google Scholar 

Francis A, et al. Addressing overtreatment of screen detected DCIS; the LORIS trial. Eur J Cancer. 2015;51(16):2296–303. https://doi.org/10.1016/j.ejca.2015.07.017.

Article  PubMed  Google Scholar 

Chizuko Kanbayashi HI, Thompson AM, Hwang E-SS, Partridge AH. Daniel William Rea, Jelle Wesseling, Tadahiko Shien, Tomonori Mizutani, Taro Shibata, the international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA).

Elshof LE et al. Aug., Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ - The LORD study., Eur J Cancer, 51, 12, 1497–510, 2015, https://doi.org/10.1016/j.ejca.2015.05.008.

Maxwell AJ, et al. Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ. Eur J Surg Oncol. 2018;44(4):429–35. https://doi.org/10.1016/j.ejso.2017.12.007.

Article  PubMed  Google Scholar 

Thompson AM, et al. Management and 5-year outcomes in 9938 women with screen-detected ductal carcinoma in situ: the UK Sloane Project. Eur J Cancer. 2018;101:210–9. https://doi.org/10.1016/j.ejca.2018.06.027.

Article  PubMed  Google Scholar 

Dinkel HP, Gassel AM, Tschammler A. Is the appearance of microcalcifications on mammography useful in predicting histological grade of malignancy in ductal cancer in situ? Br J Radiol, 73, 873, 938–44, 2000, https://doi.org/10.1259/bjr.73.873.11064645.

De Roos MAJ, Pijnappel RM, Post WJ, De Vries J, Baas PC, Groote LD. Correlation between imaging and pathology in ductal carcinoma in situ of the breast. World J Surg Oncol. 2004;2(4). https://doi.org/10.1186/1477-7819-2-4.

Selvakumaran V et al. Nov., Predicting Upstaging of DCIS to Invasive Disease: Radiologists’s Predictive Performance., Acad Radiol, 27, 11, 1580–1585, 2020, https://doi.org/10.1016/j.acra.2019.12.009.

Evans A, et al. Ductal carcinoma in situ of the breast: correlation between mammographic and pathologic findings. Am J Roentgenol. 1994;162(6):1307–11. https://doi.org/10.2214/ajr.162.6.8191988.

Article  CAS  Google Scholar 

Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P. Breast Cancer Mortality After a Diagnosis of Ductal Carcinoma In Situ., JAMA Oncol, 1, 7, 888–96, 2015, https://doi.org/10.1001/jamaoncol.2015.2510.

Lee AY, et al. Inter-reader variability in the Use of BI-RADS descriptors for suspicious findings on diagnostic mammography: a multi-institution study of 10 academic radiologists. Acad Radiol. 2017;24(1):60–6. https://doi.org/10.1016/j.acra.2016.09.010.

Article  PubMed  Google Scholar 

Aminololama-Shakeri S et al. Apr., Can Radiologists Predict the Presence of Ductal Carcinoma In Situ and Invasive Breast Cancer? AJR Am J Roentgenol, 208, 4, 933–939, 2017, https://doi.org/10.2214/AJR.16.16073.

Groen EJ, et al. Prognostic value of histopathological DCIS features in a large-scale international interrater reliability study. Breast Cancer Res Treat. 2020;183(3):759–70. https://doi.org/10.1007/s10549-020-05816-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Seijen M, et al. Variability in grading of ductal carcinoma in situ among an international group of pathologists. J Pathol Clin Res. 2021;7(3):233–42. https://doi.org/10.1002/cjp2.201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker JA, Kornguth PJ, Floyd CE. Breast imaging reporting and data system standardized mammography lexicon: observer variability in lesion description., AJR Am J Roentgenol, 166, 4, 773–8, 1996, https://doi.org/10.2214/ajr.166.4.8610547.

Berg WA, Campassi C, Langenberg P, Sexton MJ. Breast Imaging Reporting and Data System: inter- and intraobserver variability in feature analysis and final assessment., AJR Am J Roentgenol, 174, 6, 1769–77, 2000, https://doi.org/10.2214/ajr.174.6.1741769.

Gülsün M, Demirkazik FB, Ariyürek M. Evaluation of breast microcalcifications according to Breast Imaging Reporting and Data System criteria and Le Gal’s classification., Eur J Radiol,47, 3, 227–31, 2003, https://doi.org/10.1016/s0720-048x(02)00181-x.

Kerlikowske K et al. Dec., Variability and accuracy in mammographic interpretation using the American College of Radiology Breast Imaging Reporting and Data System., J Natl Cancer Inst, 90, 23, 1801–9, 1998, https://doi.org/10.1093/jnci/90.23.1801.

Lazarus E, Mainiero MB, Schepps B, Koelliker SL, Livingston LS. BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value. Radiology. 2006;239(2):385–91. https://doi.org/10.1148/radiol.2392042127.

Article  PubMed  Google Scholar 

Bria A, Karssemeijer N, Tortorella F. Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications. Med Image Anal. 2014;18(2):241–52. https://doi.org/10.1016/j.media.2013.10.014.

Article  CAS  PubMed  Google Scholar 

Gavrielides MA, Lo JY, Floyd CE. Parameter optimization of a computer-aided diagnosis scheme for the segmentation of microcalcification clusters in mammograms., Med Phys, 29, 4, 475–83, 2002, https://doi.org/10.1118/1.1460874.

Jing H, Yang Y, Nishikawa RM. Detection of clustered microcalcifications using spatial point process modeling. Phys Med Biol. 2011;56(1):1–17. https://doi.org/10.1088/0031-9155/56/1/001.

Article  PubMed  Google Scholar 

Zhang E, Wang F, Li Y, Bai X. Automatic detection of microcalcifications using mathematical morphology and a support vector machine. Biomed Mater Eng. 2014;24(1):53–9. https://doi.org/10.3233/BME-130783.

Article  PubMed  Google Scholar 

Pai VR, Gregory NE, Swinford AE, Rebner M. Ductal carcinoma in situ: computer-aided detection in screening mammography., Radiology, 241, 3, 689–94, 2006, https://doi.org/10.1148/radiol.2413051366.

Mutasa S, et al. Potential role of Convolutional Neural Network Based Algorithm in Patient Selection for DCIS Observation trials using a Mammogram dataset. Acad Radiol. 2020;27:774–9. https://doi.org/10.1016/j.acra.2019.08.012.

Article  PubMed  Google Scholar 

Hou R et al. Sep., Prediction of Upstaged Ductal Carcinoma in situ Using Forced Labeling and Domain Adaptation., IEEE Trans Biomed Eng, 9294, 1–1, 2019, https://doi.org/10.1109/TBME.2019.2940195.

Hou R et al. Apr., Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features., Radiology, 303, 1, 54–62, 2022, https://doi.org/10.1148/radiol.210407.

Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi C, Saccarelli, Pinker K. AI-enhanced breast imaging: where are we and where are we heading? Eur J Radiol. 2021;142:109882. https://doi.org/10.1016/j.ejrad.2021.109882.

Article  PubMed  PubMed Central  Google Scholar 

Ibrahim A et al. Apr., Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework, Methods, 188, 20–29, 2021, https://doi.org/10.1016/j.ymeth.2020.05.022.

Ou WC, Polat D, Dogan BE. Deep learning in breast radiology: current progress and future directions. Eur Radiol. 2021;31(7):4872–85. https://doi.org/10.1007/s00330-020-07640-9.

Article  PubMed  Google Scholar 

Bhowmik A, Eskreis-Winkler S. Deep learning in breast imaging. BJR Open. 2022;4(1):20210060. https://doi.org/10.1259/bjro.20210060.

Article  PubMed  PubMed Central  Google Scholar 

Yoo JW, et al. Deep learning diagnostics for bladder tumor identification and grade prediction using RGB method. Sci Rep. 2022;12(1):17699. https://doi.org/10.1038/s41598-022-22797-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vassantachart A, et al. Automatic differentiation of Grade I and II meningiomas on magnetic resonance image using an asymmetric convolutional neural network. Sci Rep. 2022;12(1):3806. https://doi.org/10.1038/s41598-022-07859-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casparie M, et al. Pathology databanking and biobanking in the Netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive. Cell Oncol. 2007;29(1):19–24. https://doi.org/10.1155/2007/971816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–241, 2015, https://doi.org/10.1007/978-3-319-24574-4_28.

Goodfellow A, Bengio I, Courville Y. Softmax Units for Multinoulli Output Distributions’’ Deep Learning, in ‘6.2.2.3 Softmax Units for Multinoulli Output Distributions’ Deep Learning, 2016, p. MIT Press. pp. 180–184. ISBN 978-0-26203561-3.

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach., Biometrics, 44, 3, 837–45, Sep. 1988.

Shi B et al. Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features., J Am Coll Radiol, 15, 3 , 527–534, 2018, https://doi.org/10.1016/j.jacr.2017.11.036.

Shi B, et al. Can Occult Invasive Disease in Ductal Carcinoma in situ be predicted using computer-extracted mammographic features? Acad Radiol. 2017;24(9):1139–47. https://doi.org/10.1016/j.acra.2017.03.013.

Article  PubMed  PubMed Central  Google Scholar 

Visser LL, et al. Clinicopathological risk factors for an invasive breast cancer recurrence after ductal carcinoma in situ-a nested case-control study. Clin Cancer Res. 2018;24(15):3593–601. https:/

留言 (0)

沒有登入
gif