Evaluation of antifungal activity of visible light-activated doped TiO2 nanoparticles

Zhang, Y., Zhu, Y., Chen, J., Wang, Y., Sherwood, M. E., Murray, C. K., Vrahas, M. S., Hooper, D. C., Hamblin, M. R., & Dai, T. (2016). Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies. Virulence, 7, 536–545. https://doi.org/10.1080/21505594.2016.1155015

Article  CAS  PubMed Central  PubMed  Google Scholar 

Lee, Y., Puumala, E., Robbins, N., & Cowen, L. E. (2021). Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chemical Reviews, 121, 3390–3411. https://doi.org/10.1021/acs.chemrev.0c00199

Article  CAS  PubMed  Google Scholar 

Ene, I. V., Bennett, R. J., & Anderson, M. Z. (2019). Mechanisms of genome evolution in Candida albicans. Current Opinion in Microbiology, 52, 47–54. https://doi.org/10.1016/j.mib.2019.05.001

Article  CAS  PubMed Central  PubMed  Google Scholar 

Nucci, M., Queiroz-Telles, F., Tobón, A. M., Restrepo, A., & Colombo, A. L. (2010). Epidemiology of opportunistic fungal infections in Latin America. Clinical Infectious Diseases, 51, 561–570. https://doi.org/10.1086/655683

Article  PubMed  Google Scholar 

Dai, T., Vrahas, M. S., Murray, C. K., & Hamblin, M. R. (2012). Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert review of Anti-infective Therapy, 10(2), 185–195.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gaitanis, G., Magiatis, P., Hantschke, M., Bassukas, I. D., & Velegraki, A. (2012). The Malassezia genus in skin and systemic diseases. Clinical Microbiology Reviews, 25, 106–141. https://doi.org/10.1128/CMR.00021-11

Article  PubMed Central  PubMed  Google Scholar 

O’Donovan, P., Perrett, C. M., Zhang, X., Montaner, B., Xu, Y.-Z., Harwood, C. A., McGregor, J. M., Walker, S. L., Hanaoka, F., & Karran, P. (2005). Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science (80), 309, 1871–1874. https://doi.org/10.1126/science.1114233

Wang, T., Dong, J., Yin, H., & Zhang, G. (2020). Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: An in vitro study. Lasers in Medical Science, 35, 1329–1339. https://doi.org/10.1007/s10103-019-02928-9

Article  PubMed  Google Scholar 

Wu, J., & Li, Z. (2013). Applications of nanotechnology in biomedicine. Chinese Science Bulletin, 58, 4515–4518. https://doi.org/10.1007/s11434-013-6063-0

Article  Google Scholar 

Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2004). Mechanisms in photodynamic therapy: Part one—Photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 1, 279–293. https://doi.org/10.1016/S1572-1000(05)00007-4

Article  CAS  PubMed Central  PubMed  Google Scholar 

Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2005). Mechanisms in photodynamic therapy: Part two—Cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy, 2, 1–23. https://doi.org/10.1016/S1572-1000(05)00030-X

Article  CAS  PubMed Central  PubMed  Google Scholar 

Sortino, S. (2016). Light-responsive nanostructured systems for applications in nanomedicine. Cham: Springer. https://doi.org/10.1007/978-3-319-22942-3

Book  Google Scholar 

Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., & Bahador, A. (2018). Photosensitizers in antibacterial photodynamic therapy: An overview. LASER Therapy, 27, 293–302. https://doi.org/10.5978/islsm.27_18-RA-01

Article  PubMed Central  PubMed  Google Scholar 

Shang, H., Han, D., Ma, M., Li, S., Xue, W., & Zhang, A. (2017). Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration. Journal of Photochemistry and Photobiology, B: Biology, 177, 112–123. https://doi.org/10.1016/j.jphotobiol.2017.10.016

Article  CAS  PubMed  Google Scholar 

Perni, S., Prokopovich, P., Pratten, J., Parkin, I. P., & Wilson, M. (2011). Nanoparticles: Their potential use in antibacterial photodynamic therapy. Photochemical and Photobiological Sciences, 10, 712–720. https://doi.org/10.1039/c0pp00360c

Article  CAS  PubMed  Google Scholar 

Dar, G. I., Saeed, M., & Wu, A. (2020). Toxicity of TiO2 nanoparticles. In TiO2 nanoparticles (pp. 67–103). Wiley. https://doi.org/10.1002/9783527825431.ch2

Li, S. Q., Zhu, R. R., Zhu, H., Xue, M., Sun, X. Y., De Yao, S., & Wang, S. L. (2008). Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food and Chemical Toxicology, 46, 3626–3631. https://doi.org/10.1016/j.fct.2008.09.012

Article  CAS  PubMed  Google Scholar 

Rashid, M. M., Tavčer, P. F., & Tomšič, B. (2021). Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials. https://doi.org/10.3390/nano11092354

Article  PubMed Central  PubMed  Google Scholar 

Zhang, L. W., & Monteiro-Riviere, N. A. (2019). Toxicity assessment of six titanium dioxide nanoparticles in human epidermal keratinocytes. Cutaneous and Ocular Toxicology, 38, 66–80. https://doi.org/10.1080/15569527.2018.1527848

Article  CAS  PubMed  Google Scholar 

Horie, M., Sugino, S., Kato, H., Tabei, Y., Nakamura, A., & Yoshida, Y. (2016). Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity. Toxicology Mechanisms and Methods, 26, 284–294. https://doi.org/10.1080/15376516.2016.1175530

Article  CAS  PubMed  Google Scholar 

Geppert, M., Schwarz, A., Stangassinger, L. M., Wenger, S., Wienerroither, L. M., Ess, S., Duschl, A., & Himly, M. (2020). Interactions of TiO2 nanoparticles with ingredients from modern lifestyle products and their effects on human skin cells. Chemical Research in Toxicology, 33, 1215–1225. https://doi.org/10.1021/acs.chemrestox.9b00428

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ma, J., Shi, H., Sun, H., Li, J., & Bai, Y. (2019). Antifungal effect of photodynamic therapy mediated by curcumin on Candida albicans biofilms in vitro. Photodiagnosis and Photodynamic Therapy, 27, 280–287. https://doi.org/10.1016/j.pdpdt.2019.06.015

Article  CAS  PubMed  Google Scholar 

Alves, F., Pavarina, A. C., de Mima, E. G. O., McHale, A. P., & Callan, J. F. (2018). Antimicrobial sonodynamic and photodynamic therapies against Candida albicans. Biofouling, 34, 357–367. https://doi.org/10.1080/08927014.2018.1439935

Article  CAS  PubMed  Google Scholar 

Azizi, A., Amirzadeh, Z., Rezai, M., Lawaf, S., & Rahimi, A. (2016). Effect of photodynamic therapy with two photosensitizers on Candida albicans. Journal of Photochemistry and Photobiology, B: Biology, 158, 267–273. https://doi.org/10.1016/j.jphotobiol.2016.02.027

Article  CAS  PubMed  Google Scholar 

Dovigo, L. N., Pavarina, A. C., De Oliveira Mima, E. G., Giampaolo, E. T., Vergani, C. E., & Bagnato, V. S. (2011). Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses, 54, 123–130. https://doi.org/10.1111/j.1439-0507.2009.01769.x

Article  CAS  PubMed  Google Scholar 

Jia, L., Qiu, J., Du, L., Li, Z., Liu, H., & Ge, S. (2017). TiO2 nanorod arrays as a photocatalytic coating enhanced antifungal and antibacterial efficiency of Ti substrates. Nanomedicine, 12, 761–776. https://doi.org/10.2217/nnm-2016-0398

Article  CAS  PubMed  Google Scholar 

Chen, J., Yao, M., & Wang, X. (2008). Investigation of transition metal ion doping behaviors on TiO2 nanoparticles. Journal of Nanoparticle Research, 10, 163–171. https://doi.org/10.1007/s11051-007-9237-3

Article  CAS  Google Scholar 

Lin, L., Song, X., Dong, X., & Li, B. (2021). Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 36, 102597. https://doi.org/10.1016/j.pdpdt.2021.102597

Article  CAS  PubMed  Google Scholar 

Kabekkodu, S. N., Faber, J., & Fawcett, T. (2002). New powder diffraction file (PDF-4) in relational database format: Advantages and data-mining capabilities. Acta Crystallographica, Section B: Structural Science, 58, 333–337. https://doi.org/10.1107/S0108768102002458

Article  CAS  PubMed  Google Scholar 

Abdullahi, S. S., Güner, S., Koseoglu, Y., Musa, I. M., Adamu, B. I., & Abdulhamid, M. (2016). Sımple method for the determination of band gap of a nanopowdered sample using Kubelka–Munk theory. Journal of the Nigerian Association of Mathematical Physics, 35, 241–246.

Google Scholar 

Hengerer, R., Bolliger, B., Erbudak, M., & Grätzel, M. (2000). Structure and stability of the anatase TiO2 (101) and (001) surfaces. Surface Science, 460, 162–169. https://doi.org/10.1016/S0039-6028(00)00527-6

Article  CAS  Google Scholar 

Lazzeri, M., Vittadini, A., & Selloni, A. (2001). Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B—Condensed Matter and Materials Physics, 63, 1554091–1554099. https://doi.org/10.1103/PhysRevB.63.155409

Article  CAS  Google Scholar 

Fang, W. Q., Gong, X. Q., & Yang, H. G. (2011). On the unusual properties of anatase TiO2 exposed by highly reactive facets. Journal of Physical Chemistry Letters, 2, 725–734. https://doi.org/10.1021/jz200117r

Article  CAS  Google Scholar 

Yamakata, A., Vequizo, J. J. M., & Matsunaga, H. (2015). Distinctive behavior of photogenerated electrons and holes in anatase and rutile TiO2 powders. Journal of Physical Chemistry C, 119, 24538–24545. https://doi.org/10.1021/acs.jpcc.5b09236

Article  CAS  Google Scholar 

Vequizo, J. J. M., Matsunaga, H., Ishiku, T., Kamimura, S., Ohno, T., & Yamakata, A. (2017). trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: Comparison with anatase and rutile TiO2 powders. ACS Catalysis, 7, 2644–2651.

留言 (0)

沒有登入
gif