Asprosin: its function as a novel endocrine factor in metabolic-related diseases

Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F et al (2016) Asprosin, a fasting-induced glucogenic protein hormone. Cell 165(3):566–579. https://doi.org/10.1016/j.cell.2016.02.063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazur-Bialy AI (2021) Asprosin—a fasting-induced, glucogenic, and orexigenic adipokine as a new promising player will it be a new factor in the treatment of obesity, diabetes, or infertility? A review of the literature. Nutrients 13(2):620. https://doi.org/10.3390/nu13020620

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farrag M, Ait Eldjoudi D, Gonzalez-Rodriguez M, Cordero-Barreal A, Ruiz-Fernandez C, Capuozzo M et al (2022) Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne) 13:1101091. https://doi.org/10.3389/fendo.2022.1101091

Article  PubMed  Google Scholar 

Naiemian S, Naeemipour M, Zarei M, Lari Najafi M, Gohari A, Behroozikhah MR et al (2020) Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol Metab Syndr. https://doi.org/10.1186/s13098-020-00564-w

Article  PubMed  PubMed Central  Google Scholar 

Zhang L, Chen C, Zhou N, Fu Y, Cheng X (2019) Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clin Chim Acta 489:183–188. https://doi.org/10.1016/j.cca.2017.10.034

Article  CAS  PubMed  Google Scholar 

Wang R, Lin P, Sun H, Hu W (2021) Increased serum asprosin is correlated with diabetic nephropathy. Diabetol Metab Syndr 13(1):51. https://doi.org/10.1186/s13098-021-00668-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diao H, Li X, Xu Y, Xing X, Pang S (2023) Asprosin, a novel glucogenic adipokine implicated in type 2 diabetes mellitus. J Diabet Complicat 37(11):108614. https://doi.org/10.1016/j.jdiacomp.2023.108614

Article  CAS  Google Scholar 

Duerrschmid C, He Y, Wang C, Li C, Bournat JC, Romere C et al (2017) Asprosin is a centrally acting orexigenic hormone. Nat Med 23(12):1444–1453. https://doi.org/10.1038/nm.4432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, Xu Y, Zheng Y, Kang Q, Lou Z, Liu Q et al (2021) Increased plasma asprosin levels in patients with drug-naive anorexia nervosa. Eat Weight Disord 26(1):313–321. https://doi.org/10.1007/s40519-020-00845-3

Article  PubMed  Google Scholar 

Cantay H, Binnetoglu K, Gul HF, Bingol SA (2022) Investigation of serum and adipose tissue levels of asprosin in patients with severe obesity undergoing sleeve gastrectomy. Obesity 30(8):1639–1646. https://doi.org/10.1002/oby.23471

Article  CAS  PubMed  Google Scholar 

Wang CY, Lin TA, Liu KH, Liao CH, Liu YY, Wu VC et al (2019) Serum asprosin levels and bariatric surgery outcomes in obese adults. Int J Obes 43(5):1019–1025. https://doi.org/10.1038/s41366-018-0248-1

Article  CAS  Google Scholar 

Wiecek M, Szymura J, Sproull J, Szygula Z (2019) Decreased blood asprosin in hyperglycemic menopausal women as a result of whole-body cryotherapy regardless of metabolic syndrome. J Clin Med. https://doi.org/10.3390/jcm8091428

Article  PubMed  PubMed Central  Google Scholar 

Gozel N, Kilinc F (2021) Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol 72(1):37–43. https://doi.org/10.5603/EP.a2020.0059

Article  CAS  PubMed  Google Scholar 

Long W, Xie X, Du C, Zhao Y, Zhang C, Zhan D et al (2019) Decreased circulating levels of asprosin in obese children. Horm Res Paediatr 91(4):271–277. https://doi.org/10.1159/000500523

Article  CAS  PubMed  Google Scholar 

Corica D, Aversa T, Currò M, Tropeano A, Pepe G, Alibrandi A et al (2021) Asprosin serum levels and glucose homeostasis in children with obesity. Cytokine 142:155477. https://doi.org/10.1016/j.cyto.2021.155477

Article  CAS  PubMed  Google Scholar 

Sunnetci Silistre E, Hatipogl HU (2020) Increased serum circulating asprosin levels in children with obesity. Pediatr Int 62(4):467–476. https://doi.org/10.1111/ped.14176

Article  CAS  PubMed  Google Scholar 

Wang M, Yin C, Wang L, Liu Y, Li H, Li M et al (2019) Serum asprosin concentrations are increased and associated with insulin resistance in children with obesity. Ann Nutr Metab 75(4):205–212. https://doi.org/10.1159/000503808

Article  CAS  PubMed  Google Scholar 

Shabir K, Brown JE, Afzal I, Gharanei S, Weickert MO, Barber TM et al (2021) Asprosin, a novel pleiotropic adipokine implicated in fasting and obesity-related cardio-metabolic disease: comprehensive review of preclinical and clinical evidence. Cytokine Growth Factor Rev 60:120–132. https://doi.org/10.1016/j.cytogfr.2021.05.002

Article  CAS  PubMed  Google Scholar 

Hekim MG, Kelestemur MM, Bulmus FG, Bilgin B, Bulut F, Gokdere E et al (2021) Asprosin, a novel glucogenic adipokine: a potential therapeutic implication in diabetes mellitus. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2021.1894178

Article  PubMed  Google Scholar 

Ke F, Xue G, Jiang X, Li F, Lai X, Zhang M et al (2020) Combination of asprosin and adiponectin as a novel marker for diagnosing non-alcoholic fatty liver disease. Cytokine 134:155184. https://doi.org/10.1016/j.cyto.2020.155184

Article  CAS  PubMed  Google Scholar 

Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA (2023) Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 138(1):106979. https://doi.org/10.1016/j.ymgme.2022.106979

Article  CAS  PubMed  Google Scholar 

Zhang Z, Zhu L, Wang Z, Hua N, Hu S, Chen Y (2023) Can the new adipokine asprosin be a metabolic troublemaker for cardiovascular diseases? State Art Rev Prog Lipid Res 91:101240. https://doi.org/10.1016/j.plipres.2023.101240

Article  CAS  Google Scholar 

Mishra I, Duerrschmid C, Ku Z, He Y, Xie W, Silva ES et al (2021) Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. Elife. https://doi.org/10.7554/eLife.63784

Article  PubMed  PubMed Central  Google Scholar 

Sakai LY, Keene DR, Renard M, De Backer J (2016) FBN1: the disease-causing gene for marfan syndrome and other genetic disorders. Gene 591(1):279–291. https://doi.org/10.1016/j.gene.2016.07.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milewicz DM, Grossfield J, Cao SN, Kielty C, Covitz W, Jewett T (1995) A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest 95(5):2373–2378. https://doi.org/10.1172/JCI117930

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinhardt DP, Gambee JE, Ono RN, Bachinger HP, Sakai LY (2000) Initial steps in assembly of microfibrils formation of disulfide-cross-linked multimers containing fibrillin-1. J Biol Chem 275(3):2205–2210. https://doi.org/10.1074/jbc.275.3.2205

Article  CAS  PubMed  Google Scholar 

Jensen SA, Aspinall G, Handford PA (2014) C-terminal propeptide is required for fibrillin-1 secretion and blocks premature assembly through linkage to domains cbEGF41-43. Proc Natl Acad Sci U S A 111(28):10155–10160. https://doi.org/10.1073/pnas.1401697111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lonnqvist L, Reinhardt D, Sakai L, Peltonen L (1998) Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet 7(13):2039–2044. https://doi.org/10.1093/hmg/7.13.2039

Article  CAS  PubMed  Google Scholar 

Lee SS, Knott V, Jovanovic J, Harlos K, Grimes JM, Choulier L et al (2004) Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 12(4):717–729. https://doi.org/10.1016/j.str.2004.02.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loeys B, Nuytinck L, Delvaux I, De Bie S, De Paepe A (2001) Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med 161(20):2447–2454. https://doi.org/10.1001/archinte.161.20.2447

Article  CAS  PubMed  Google Scholar 

Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V et al (2010) Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3000488

Article  PubMed  PubMed Central  Google Scholar 

Garg A, Xing C (2014) De novo heterozygous FBN1 mutations in the extreme C-terminal region cause progeroid fibrillinopathy. Am J Med Genet A 164A(5):1341–1345. https://doi.org/10.1002/ajmg.a.36449

Article  CAS  PubMed  PubMed Central  Google

留言 (0)

沒有登入
gif