Synthesis, characterization and preparation of scattered nano sphered alumina: acetone-based nanofluid with enhanced stability and thermal properties

Ali N, Teixeira JA, Addali A (2018) A review on nanofluids: fabrication, stability, and thermophysical properties. J Nanomater. https://doi.org/10.1155/2018/6978130

Article  Google Scholar 

Anushree C, Philip J (2016) Assessment of long term stability of aqueous nanofluids using different experimental techniques. J Mol Liq. https://doi.org/10.1016/j.molliq.2016.07.051

Article  Google Scholar 

Arthur O, Karim MA (2016) An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.10.065

Article  Google Scholar 

Asadi A, Pourfattah F, Miklós Szilágyi I et al (2019) Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: a comprehensive review. Ultrason Sonochem 58:104701. https://doi.org/10.1016/j.ultsonch.2019.104701

Article  CAS  PubMed  Google Scholar 

Avsec J, Oblak M (2007) The calculation of viscosity and thermal conductivity for nanofluids on the basis of statistical nanomechanics. Int J Heat Mass Transf 50:4331–4341. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.064

Article  CAS  Google Scholar 

Batchelor GK (1977) The effect of brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117. https://doi.org/10.1017/S0022112077001062

Article  Google Scholar 

Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571. https://doi.org/10.1063/1.1700493

Article  CAS  Google Scholar 

Cacua K, Buitrago-Sierra R, Herrera B et al (2017) Influence of different parameters and their coupled effects on the stability of alumina nanofluids by a fractional factorial design approach. Adv Powder Technol 28:2581–2588. https://doi.org/10.1016/j.apt.2017.07.009

Article  CAS  Google Scholar 

Chakraborty S, Panigrahi P (2020) Stability of nanofluid: a review. Appl Therm Eng 174:115259. https://doi.org/10.1016/j.applthermaleng.2020.115259

Article  CAS  Google Scholar 

Chen L, Xie H, Li Y, Yu W (2008) Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta 477:21–24. https://doi.org/10.1016/j.tca.2008.08.001

Article  CAS  Google Scholar 

Ding Y, Wen D (2005) Particle migration in a flow of nanoparticle suspensions. Powder Technol 149:84–92. https://doi.org/10.1016/j.powtec.2004.11.012

Article  CAS  Google Scholar 

Eastman JA, Choi US, Li S et al (1996) Enhanced thermal conductivity through the development of nanofluids. MRS Proc. https://doi.org/10.1557/PROC-457-3

Article  Google Scholar 

Eastman JA, Choi US, Li S et al (1997) Enhanced thermal conductivity through the development of nanofluids. Mater Res Soc Symp Proc 457:3–11

Article  CAS  Google Scholar 

Gao JW, Zheng RT, Ohtani H et al (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue Clust. Nano Lett 9:4128–4132. https://doi.org/10.1021/nl902358m

Article  CAS  Google Scholar 

Ghanbarpour M, Bitaraf Haghigi E, Khodabandeh R (2014) Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Therm Fluid Sci 53:227–235. https://doi.org/10.1016/j.expthermflusci.2013.12.013

Article  CAS  Google Scholar 

Gharagozloo PE, Goodson KE (2010) Aggregate fractal dimensions and thermal conduction in nanofluids. J Appl Phys 108:74309. https://doi.org/10.1063/1.3481423

Article  CAS  Google Scholar 

Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191. https://doi.org/10.1021/i160003a005

Article  CAS  Google Scholar 

Hashemi N, Abbaszadeh Mayvan A, Taghizadeh Alisaraei A et al (2022) Surfactants impact on Nanofluids stability used in Photovoltaic-thermal systems: an comprehensive review

Huang J, Wang X et al (2009) Influence of pH on the stability characteristics of nanofluids. In: Symposium on photonics and optoelectronics https://doi.org/10.1109/SOPO.2009.5230102

Hung Y-H, Teng T-P, Lin B-G (2013) Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp Therm Fluid Sci 44:504–511. https://doi.org/10.1016/j.expthermflusci.2012.08.012

Article  CAS  Google Scholar 

Hussain S, Tayebi T, Armaghani T et al (2022) Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure. Appl Math Mech 43:447–466. https://doi.org/10.1007/s10483-022-2837-6

Article  Google Scholar 

Jama M, Singh T, Gamaleldin SM et al (2016) Critical review on nanofluids: preparation, characterization, and applications. J Nanomater. https://doi.org/10.1155/2016/6717624

Article  Google Scholar 

Ji J, Lu W, Si C et al (2020) Overview on the preparation and heat transfer enhancement of nanofluids. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1637/1/012003

Article  Google Scholar 

Kole M, Dey TK (2012) Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids. Int J Therm Sci 62:61–70. https://doi.org/10.1016/j.ijthermalsci.2012.02.002

Article  CAS  Google Scholar 

Kumar A, Khurana D, Choudhary R, Subudhi S (2015) ICESD2015–001

Li XF, Zhu DS, Wang XJ et al (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim Acta 469:98–103. https://doi.org/10.1016/j.tca.2008.01.008

Article  CAS  Google Scholar 

Li Y, Zhou J, Tung S et al (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196:89–101. https://doi.org/10.1016/j.powtec.2009.07.025

Article  CAS  Google Scholar 

Li X, Zou C, Zhou L, Qi A (2016) Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int J Heat Mass Transf 97:631–637. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.056

Article  CAS  Google Scholar 

Li Y, Qin Z, Zou Z, Hou L (2020a) Study on influence of dispersants on stability, thermal conductivity and viscosity of BN/EG nanofluids. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/774/1/012118

Article  Google Scholar 

Li ZX, Khaled U, Al-Rashed AAAA et al (2020b) Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119124

Article  Google Scholar 

Li J, Zhang X, Xu B, Yuan M (2021) Nanofluid research and applications: a review. Int Commun Heat Mass Transf 127:105543. https://doi.org/10.1016/j.icheatmasstransfer.2021.105543

Article  CAS  Google Scholar 

Mehta S, Chauhan KP, Kanagaraj S (2011) Modeling of thermal conductivity of nanofluids by modifying Maxwell’s equation using cell model approach. J Nanoparticle Res 13:2791–2798. https://doi.org/10.1007/s11051-010-0167-0

Article  CAS  Google Scholar 

Moldoveanu GM, Minea AA (2019) Specific heat experimental tests of simple and hybrid oxide-water nanofluids: proposing new correlation. J Mol Liq 279:299–305. https://doi.org/10.1016/j.molliq.2019.01.137

Article  CAS  Google Scholar 

Motevasel M, Nazar ARS, Jamialahmadi M (2018) The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: experimental and theoretical evaluations. Heat Mass Transf 54:125–133. https://doi.org/10.1007/s00231-017-2116-2

Article  CAS  Google Scholar 

Murshed SMS, Estellé P (2017) A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev 76:1134–1152. https://doi.org/10.1016/j.rser.2017.03.113

Article  CAS  Google Scholar 

Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170. https://doi.org/10.1080/08916159808946559

Article  CAS  Google Scholar 

Peng X-F, Yu X, Xia L-F, Zhong X (2007) Influence factors on suspension stability of nanofluids. J Zhejiang Univ Eng Sci 41:577–580

CAS  Google Scholar 

Raud R, Hosterman B, Diana A et al (2017) Experimental study of the interactivity, specific heat, and latent heat of fusion of water based nanofluids. Appl Therm Eng 117:164–168. https://doi.org/10.1016/j.applthermaleng.2017.02.033

Article  CAS  Google Scholar 

Sarsam WS, Amiri A, Zubir MNM et al (2016) Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas. Colloids Surf A Physicochem Eng Asp 500:17–31. https://doi.org/10.1016/j.colsurfa.2016.04.016

Article  CAS  Google Scholar 

Sedighi M, Mohebbi A (2014) Investigation of nanoparticle aggregation effect on thermal properties of nanofluid by a combined equilibrium and non-equilibrium molecular dynamics simulation. J Mol Liq 197:14–22. https://doi.org/10.1016/j.molliq.2014.04.019

Article  CAS  Google Scholar 

Sezer N, Atieh MA, Koç M (2019) A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol 344:404–431. https://doi.org/10.1016/j.powtec.2018.12.016

Article  CAS  Google Scholar 

Shima PD, Philip J, Raj B (2010) Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J Phys Chem C 114:18825–18833. https://doi.org/10.1021/jp107447q

Article  CAS  Google Scholar 

Shukla RK, Dhir VK (2008) Effect of brownian motion on thermal conductivity of nanofluids. J Heat Transf 130:1–13. https://doi.org/10.1115/1.2818768

Article  CAS  Google Scholar 

Simpson S, Schelfhout A, Golden C, Vafaei S (2019) Nanofluid thermal conductivity and effective parameters. Appl Sci 9:87

Article 

留言 (0)

沒有登入
gif