Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

Article  PubMed  Google Scholar 

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Appay R, Dehais C, Maurage CA, Alentorn A, Carpentier C, Colin C, Ducray F, Escande F, Idbaih A, Kamoun A, Marie Y, Mokhtari K, Tabouret E, Trabelsi N, Uro-Coste E, Delattre JY, Figarella-Branger D, Network P (2019) CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol 21:1519–1528. https://doi.org/10.1093/neuonc/noz124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shirahata M, Ono T, Stichel D, Schrimpf D, Reuss DE, Sahm F, Koelsche C, Wefers A, Reinhardt A, Huang K, Sievers P, Shimizu H, Nanjo H, Kobayashi Y, Miyake Y, Suzuki T, Adachi JI, Mishima K, Sasaki A, Nishikawa R, Bewerunge-Hudler M, Ryzhova M, Absalyamova O, Golanov A, Sinn P, Platten M, Jungk C, Winkler F, Wick A, Hanggi D, Unterberg A, Pfister SM, Jones DTW, van den Bent M, Hegi M, French P, Baumert BG, Stupp R, Gorlia T, Weller M, Capper D, Korshunov A, Herold-Mende C, Wick W, Louis DN, von Deimling A (2018) Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136:153–166. https://doi.org/10.1007/s00401-018-1849-4

Article  CAS  PubMed  Google Scholar 

Jeuken J, Cornelissen S, Boots-Sprenger S, Gijsen S, Wesseling P (2006) Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J Mol Diagn 8:433–443. https://doi.org/10.2353/jmoldx.2006.060012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapel DB, Schulte JJ, Berg K, Churg A, Dacic S, Fitzpatrick C, Galateau-Salle F, Hiroshima K, Krausz T, Le Stang N, McGregor S, Nabeshima K, Husain AN (2020) MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma. Mod Pathol 33:245–254. https://doi.org/10.1038/s41379-019-0310-0

Article  CAS  PubMed  Google Scholar 

Hida T, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Kawahara K, Iwasaki A, Okamoto T, Oda Y, Honda H, Nabeshima K (2017) Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer 104:98–105. https://doi.org/10.1016/j.lungcan.2016.12.017

Article  PubMed  Google Scholar 

Kinoshita Y, Hamasaki M, Yoshimura M, Matsumoto S, Sato A, Tsujimura T, Ueda H, Makihata S, Kato F, Iwasaki A, Nabeshima K (2018) A combination of MTAP and BAP1 immunohistochemistry is effective for distinguishing sarcomatoid mesothelioma from fibrous pleuritis. Lung Cancer 125:198–204. https://doi.org/10.1016/j.lungcan.2018.09.019

Article  PubMed  Google Scholar 

Hustinx SR, Leoni LM, Yeo CJ, Brown PN, Goggins M, Kern SE, Hruban RH, Maitra A (2005) Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Mod Pathol 18:959–963. https://doi.org/10.1038/modpathol.3800377

Article  CAS  PubMed  Google Scholar 

Hustinx SR, Hruban RH, Leoni LM, Iacobuzio-Donahue C, Cameron JL, Yeo CJ, Brown PN, Argani P, Ashfaq R, Fukushima N, Goggins M, Kern SE, Maitra A (2005) Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer: a potential new target for therapy. Cancer Biol Ther 4:83–86. https://doi.org/10.4161/cbt.4.1.1380

Article  CAS  PubMed  Google Scholar 

Powell EL, Leoni LM, Canto MI, Forastiere AA, Iocobuzio-Donahue CA, Wang JS, Maitra A, Montgomery E (2005) Concordant loss of MTAP and p16/CDKN2A expression in gastroesophageal carcinogenesis: evidence of homozygous deletion in esophageal noninvasive precursor lesions and therapeutic implications. Am J Surg Pathol 29:1497–1504. https://doi.org/10.1097/01.pas.0000170349.47680.e8

Article  PubMed  Google Scholar 

Su CY, Chang YC, Chan YC, Lin TC, Huang MS, Yang CJ, Hsiao M (2014) MTAP is an independent prognosis marker and the concordant loss of MTAP and p16 expression predicts short survival in non-small cell lung cancer patients. Eur J Surg Oncol 40:1143–1150. https://doi.org/10.1016/j.ejso.2014.04.017

Article  PubMed  Google Scholar 

de Oliveira SF, Ganzinelli M, Chila R, Serino L, Maciel ME, Urban Cde A, de Lima RS, Cavalli IJ, Generali D, Broggini M, Damia G, Ribeiro EM (2016) Characterization of MTAP gene expression in breast cancer patients and cell lines. PLoS One 11:e0145647. https://doi.org/10.1371/journal.pone.0145647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bataille F, Rogler G, Modes K, Poser I, Schuierer M, Dietmaier W, Ruemmele P, Muhlbauer M, Wallner S, Hellerbrand C, Bosserhoff AK (2005) Strong expression of methylthioadenosine phosphorylase (MTAP) in human colon carcinoma cells is regulated by TCF1/[beta]-catenin. Lab Invest 85:124–136. https://doi.org/10.1038/labinvest.3700192

Article  CAS  PubMed  Google Scholar 

Olopade OI, Pomykala HM, Hagos F, Sveen LW, Espinosa R, 3rd, Dreyling MH, Gursky S, Stadler WM, Le Beau MM, Bohlander SK (1995) Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21. Proc Natl Acad Sci U S A 92: 6489-6493.https://doi.org/10.1073/pnas.92.14.6489

Satomi K, Ohno M, Matsushita Y, Takahashi M, Miyakita Y, Narita Y, Ichimura K, Yoshida A (2021) Utility of methylthioadenosine phosphorylase immunohistochemical deficiency as a surrogate for CDKN2A homozygous deletion in the assessment of adult-type infiltrating astrocytoma. Mod Pathol 34:688–700. https://doi.org/10.1038/s41379-020-00701-w

Article  CAS  PubMed  Google Scholar 

Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507. https://doi.org/10.3171/jns.2005.103.3.0498

Article  PubMed  Google Scholar 

Nojiri T, Nariai T, Aoyagi M, Senda M, Ishii K, Ishiwata K, Ohno K (2009) Contributions of biological tumor parameters to the incorporation rate of L: -[methyl-(11)C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol 93:233–241. https://doi.org/10.1007/s11060-008-9767-2

Article  CAS  PubMed  Google Scholar 

Ogishima T, Tamura K, Kobayashi D, Inaji M, Hayashi S, Tamura R, Nariai T, Ishii K, Maehara T (2017) ATRX status correlates with 11 C-methionine uptake in WHO grade II and III gliomas with IDH1 mutations. Brain Tumor Pathol 34:20–27. https://doi.org/10.1007/s10014-017-0280-1

Article  CAS  PubMed  Google Scholar 

Nakano T, Tamura K, Tanaka Y, Inaji M, Hayashi S, Kobayashi D, Nariai T, Toyohara J, Ishii K, Maehara T (2018) Usefulness of (11)C-methionine positron emission tomography for monitoring of treatment response and recurrence in a glioblastoma patient on bevacizumab therapy: A case report. Case Rep Oncol 11:442–449. https://doi.org/10.1159/000490457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu Y, Suzuki M, Akiyama O, Ogino I, Matsushita Y, Satomi K, Yanagisawa S, Ohno M, Takahashi M, Miyakita Y, Narita Y, Ichimura K, Kondo A (2023) Utility of real-time polymerase chain reaction for the assessment of CDKN2A homozygous deletion in adult-type IDH-mutant astrocytoma. Brain Tumor Pathol 40:93–100. https://doi.org/10.1007/s10014-023-00450-z

Article  CAS  PubMed  Google Scholar 

Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, Takada S, Ueno T, Yamashita Y, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y, Mano H (2009) KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 15:3143–3149. https://doi.org/10.1158/1078-0432.Ccr-08-3248

Article  CAS  PubMed  Google Scholar 

Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

Article  CAS  PubMed  Google Scholar 

Menezes WP, Silva VAO, Gomes INF, Rosa MN, Spina MLC, Carloni AC, Alves ALV, Melendez M, Almeida GC, Silva LSD, Clara C, da Cunha IW, Hajj GNM, Jones C, Bidinotto LT, Reis RM (2020) Loss of 5'-methylthioadenosine phosphorylase (MTAP) is frequent in high-grade gliomas; nevertheless, it is not associated with higher tumor aggressiveness. Cells 9. https://doi.org/10.3390/cells9020492

Hansen LJ, Sun R, Yang R, Singh SX, Chen LH, Pirozzi CJ, Moure CJ, Hemphill C, Carpenter AB, Healy P, Ruger RC, Chen CJ, Greer PK, Zhao F, Spasojevic I, Grenier C, Huang Z, Murphy SK, McLendon RE, Friedman HS, Friedman AH, Herndon JE 2nd, Sampson JH, Keir ST, Bigner DD, Yan H, He Y (2019) MTAP loss promotes stemness in glioblastoma and confers unique susceptibility to purine starvation. Cancer Res 79:3383–3394. https://doi.org/10.1158/0008-5472.CAN-18-1010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z, Jin Y, Zou Q, Shi X, Wu Q, Lin Z, He Q, Huang G, Qi S (2021) Integrated genomic and transcriptomic analysis suggests KRT18 mutation and MTAP are key genetic alterations related to the prognosis between astrocytoma and glioblastoma. Ann Transl Med 9:713. https://doi.org/10.21037/atm-21-1317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707. https://doi.org/10.1038/366704a0

Article  CAS  PubMed  Google Scholar 

Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677. https://doi.org/10.1126/science.274.5293.1672

Article  CAS  PubMed  Google Scholar 

Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014. https://doi.org/10.1093/emboj/17.17.5001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

留言 (0)

沒有登入
gif