Association of birth weight with type 2 diabetes mellitus and the mediating role of fatty acids traits: a two-step mendelian randomization study

Collaborators GBDD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of Disease Study 2021. Lancet. 2023;402(10397):203–34.

Article  Google Scholar 

Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301(6761):1111.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol. 2016;15:73.

Article  PubMed  PubMed Central  Google Scholar 

Mi D, Fang H, Zhao Y, Zhong L. Birth weight and type 2 diabetes: a meta-analysis. Exp Ther Med. 2017;14(6):5313–20.

PubMed  PubMed Central  Google Scholar 

Tian G, Guo C, Li Q, Liu Y, Sun X, Yin Z, et al. Birth weight and risk of type 2 diabetes: a dose-response meta-analysis of cohort studies. Diabetes Metab Res Rev. 2019;35(5):e3144.

Article  PubMed  Google Scholar 

Zhu X, Chen L, Lin J, Ba M, Liao J, Zhang P, et al. Association between fatty acids and the risk of impaired glucose tolerance and type 2 diabetes mellitus in American adults: NHANES 2005–2016. Nutr Diabetes. 2023;13(1):8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Becerra K, Ramos-Lopez O, Barron-Cabrera E, Riezu-Boj JI, Milagro FI, Martinez-Lopez E, et al. Fatty acids, epigenetic mechanisms and chronic diseases: a systematic review. Lipids Health Dis. 2019;18(1):178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Zhu Y-H, Zhu Z-Q. Research advances in the influence of lipid metabolism on cognitive impairment. Ibrain.n/a(n/a).8.

Emdin CA, Khera AV, Kathiresan S, Mendelian Randomization. JAMA. 2017;318(19):1925–6.

Article  PubMed  Google Scholar 

Xiong Y, Zhang F, Zhang Y, Wang W, Ran Y, Wu C et al. Insights into modifiable risk factors of erectile dysfunction, a wide-angled mendelian randomization study. J Adv Res. 2023.

Group B-GSW, Huang T, Wang T, Zheng Y, Ellervik C, Li X, et al. Association of Birth Weight with Type 2 diabetes and glycemic traits: a mendelian randomization study. JAMA Netw Open. 2019;2(9):e1910915.

Article  Google Scholar 

Wang T, Huang T, Li Y, Zheng Y, Manson JE, Hu FB, et al. Low birthweight and risk of type 2 diabetes: a mendelian randomisation study. Diabetologia. 2016;59(9):1920–7.

Article  PubMed  PubMed Central  Google Scholar 

Zanetti D, Tikkanen E, Gustafsson S, Priest JR, Burgess S, Ingelsson E, Birthweight. Type 2 diabetes Mellitus, and Cardiovascular Disease: addressing the Barker Hypothesis with mendelian randomization. Circ Genom Precis Med. 2018;11(6):e002054.

Article  PubMed  PubMed Central  Google Scholar 

Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet. 2018;50(4):559–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in mendelian randomization using a mixture of regressions model. PLoS Genet. 2021;17(11):e1009922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG. Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.

Article  PubMed  PubMed Central  Google Scholar 

MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annu Rev Psychol. 2007;58:593–614.

Article  PubMed  PubMed Central  Google Scholar 

Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.

Article  PubMed  Google Scholar 

Benjamini Y, Hochberg Y. Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J Royal Stat Soc Ser B: Methodological. 1995;57(1):289–300.

Google Scholar 

Zhuo X, Zhang P, Hoerger TJ. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. Am J Prev Med. 2013;45(3):253–61.

Article  PubMed  Google Scholar 

Yu YY, Lei D, He Q, Chen W. A cohort study on the relationship between education level and high-risk population of stroke. Ibrain. 2021;7(3):181–91.

Article  PubMed  PubMed Central  Google Scholar 

Wibaek R, Andersen GS, Linneberg A, Hansen T, Grarup N, Thuesen ACB, et al. Low birthweight is associated with a higher incidence of type 2 diabetes over two decades independent of adult BMI and genetic predisposition. Diabetologia. 2023;66(9):1669–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

James-Todd TM, Karumanchi SA, Hibert EL, Mason SM, Vadnais MA, Hu FB, et al. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: nurses’ Health Study II. Prev Chronic Dis. 2013;10:E156.

Article  PubMed  PubMed Central  Google Scholar 

Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu CN, Hou CY, Hsu WH, Tain YL. Early-Life origins of metabolic syndrome: mechanisms and preventive aspects. Int J Mol Sci. 2021;22:21.

Article  Google Scholar 

Lumey LH, Khalangot MD, Vaiserman AM. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932-33: a retrospective cohort study. Lancet Diabetes Endocrinol. 2015;3(10):787–94.

Article  CAS  PubMed  Google Scholar 

Fowden AL, Hill DJ. Intra-uterine programming of the endocrine pancreas. Br Med Bull. 2001;60:123–42.

Article  CAS  PubMed  Google Scholar 

Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2020;10(3):785–809.

Article  PubMed  PubMed Central  Google Scholar 

Ward AM, Syddall HE, Wood PJ, Chrousos GP, Phillips DI. Fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis: low birth weight and central HPA regulation. J Clin Endocrinol Metab. 2004;89(3):1227–33.

Article  CAS  PubMed  Google Scholar 

Gat-Yablonski G, Phillip M. Nutritionally-induced catch-up growth. Nutrients. 2015;7(1):517–51.

Article  PubMed  PubMed Central  Google Scholar 

Brons C, Jacobsen S, Hiscock N, White A, Nilsson E, Dunger D, et al. Effects of high-fat overfeeding on mitochondrial function, glucose and fat metabolism, and adipokine levels in low-birth-weight subjects. Am J Physiol Endocrinol Metab. 2012;302(1):E43–51.

Article  PubMed  Google Scholar 

Gillberg L, Perfilyev A, Brons C, Thomasen M, Grunnet LG, Volkov P, et al. Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia. 2016;59(4):799–812.

Article  CAS  PubMed  Google Scholar 

Pericuesta E, Gutierrez-Arroyo JL, Sanchez-Calabuig MJ, Gutierrez-Adan A. Postnatal Catch-Up Growth Programs Telomere dynamics and glucose intolerance in low Birth Weight mice. Int J Mol Sci. 2021;22(7).

Tierney AC, McMonagle J, Shaw DI, Gulseth HL, Helal O, Saris WH, et al. Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome–LIPGENE: a European randomized dietary intervention study. Int J Obes (Lond). 2011;35(6):800–9.

Article  CAS  PubMed  Google Scholar 

Zheng X, Ho QWC, Chua M, Stelmashenko O, Yeo XY, Muralidharan S, et al. Destabilization of beta cell FIT2 by saturated fatty acids alter lipid droplet numbers and contribute to ER stress and diabetes. Proc Natl Acad Sci U S A. 2022;119(11):e2113074119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neuenschwander M, Barbaresko J, Pischke CR, Iser N, Beckhaus J, Schwingshackl L, et al. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med. 2020;17(12):e1003347.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaeini Z, Bahadoran Z, Mirmiran P. Saturated fatty acid intake and risk of type 2 diabetes: an updated systematic review and dose-response Meta-analysis of Cohort studies. Adv Nutr. 2022;13(6):2125–35.

Article  PubMed  PubMed Central  Google Scholar 

de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978.

Article  PubMed  PubMed Central  Google Scholar 

Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94(4):1088–96.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif