Compensatory upregulation of MT2A alleviates neurogenic intermittent claudication through inhibiting activated p38 MAPK-mediated neuronal apoptosis

Williamson E, Boniface G, Marian IR, Dutton SJ, Garrett A, Morris A, et al. The Clinical effectiveness of a physiotherapy delivered physical and psychological group intervention for older adults with neurogenic claudication: the BOOST randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2022;77(8):1654–64. https://doi.org/10.1093/gerona/glac063.

Article  PubMed  PubMed Central  Google Scholar 

Jensen RK, Harhangi BS, Huygen F, Koes B. Lumbar spinal stenosis. BMJ. 2021;373:n1581. https://doi.org/10.1136/bmj.n1581.

Article  PubMed  Google Scholar 

Cao YL, Duan Y, Zhu LX, Zhan YN, Min SX, Jin AM. TGF-β1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway. Int J Mol Med. 2016;38(2):391–8. https://doi.org/10.3892/ijmm.2016.2631.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walter KL, O’Toole JE. Lumbar Spinal Stenosis. JAMA. 2022;328(3):310. https://doi.org/10.1001/jama.2022.6137.

Article  PubMed  Google Scholar 

Ishimoto Y, Yoshimura N, Muraki S, Yamada H, Nagata K, Hashizume H, et al. Associations between radiographic lumbar spinal stenosis and clinical symptoms in the general population: the wakayama spine study. Osteoarthr Cartil. 2013;21(6):783–8. https://doi.org/10.1016/j.joca.2013.02.656.

Article  CAS  Google Scholar 

Ma B, Shi J, Jia L, Yuan W, Wu J, Fu Z, et al. Over-expression of PUMA correlates with the apoptosis of spinal cord cells in rat neuropathic intermittent claudication model. PLoS ONE. 2013;8(5):e56580. https://doi.org/10.1371/journal.pone.0056580.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deer TR, Kim CK, Bowman RG 2nd, Ranson MT, Yee BS. Study of percutaneous lumbar decompression and treatment algorithm for patients suffering from neurogenic claudication. Pain Physician. 2012;15(6):451–60.

Article  PubMed  Google Scholar 

Jensen RK, Lauridsen HH, Andresen ADK, Mieritz RM, Schiottz-Christensen B, Vach W. Diagnostic screening for lumbar spinal stenosis. Clin Epidemiol. 2020;12:891–905. https://doi.org/10.2147/CLEP.S263646.

Article  PubMed  PubMed Central  Google Scholar 

Bussieres A, Cancelliere C, Ammendolia C, Comer CM, Zoubi FA, Chatillon CE, et al. Non-surgical interventions for lumbar spinal stenosis leading to neurogenic claudication: a clinical practice guideline. J Pain. 2021;22(9):1015–39. https://doi.org/10.1016/j.jpain.2021.03.147.

Article  PubMed  Google Scholar 

Chuang HC, Tsai KL, Tsai KJ, Tu TY, Shyong YJ, Jou IM, et al. Oxidative stress mediates age-related hypertrophy of ligamentum flavum by inducing inflammation, fibrosis and apoptosis through activating Akt and MAPK pathways. Aging (Albany NY). 2020;12(23):24168–83. https://doi.org/10.18632/aging.104105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Xu J, Su Q, Wu Y, Li Q, Ma Z, et al. Lysophosphatidic acid induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons by upregulating LPA4/LPA6 receptors. Mediat Inflamm. 2022;2022:1818758. https://doi.org/10.1155/2022/1818758.

Article  CAS  Google Scholar 

Kobayashi S, Uchida K, Yayama T, Takeno K, Miyazaki T, Shimada S, et al. Motor neuron involvement in experimental lumbar nerve root compression : a light and electron microscopic study. Spine. 2007;32(6):627–34. https://doi.org/10.1097/01.brs.0000257559.84494.15.

Article  PubMed  Google Scholar 

Park SH, Hong JY, Kim WK, Shin JS, Lee J, Ha IH, et al. Effects of SHINBARO2 on rat models of lumbar spinal stenosis. Mediat Inflamm. 2019;2019:7651470. https://doi.org/10.1155/2019/7651470.

Article  CAS  Google Scholar 

Ito T, Ohtori S, Inoue G, Koshi T, Doya H, Ozawa T, et al. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis. Spine. 2007;32(2):159–67. https://doi.org/10.1097/01.brs.0000251437.10545.e9.

Article  PubMed  Google Scholar 

Shunmugavel A, Martin MM, Khan M, Copay AG, Subach BR, Schuler TC, et al. Simvastatin ameliorates cauda equina compression injury in a rat model of lumbar spinal stenosis. J Neuroimmune Pharmacol. 2013;8(1):274–86. https://doi.org/10.1007/s11481-012-9419-3.

Article  PubMed  Google Scholar 

Sung HC, Chang KS, Chen ST, Hsu SY, Lin YH, Hou CP, et al. Metallothionein 2A with antioxidant and antitumor activity is upregulated by caffeic acid phenethyl ester in human bladder carcinoma cells. Antioxidants (Basel). 2022. https://doi.org/10.3390/antiox11081509.

Article  PubMed  PubMed Central  Google Scholar 

Kwak SY, Jang WI, Park S, Cho SS, Lee SB, Kim MJ, et al. Metallothionein 2 activation by pravastatin reinforces epithelial integrity and ameliorates radiation-induced enteropathy. EBioMedicine. 2021;73:103641. https://doi.org/10.1016/j.ebiom.2021.103641.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lores-Padin A, Mavrakis E, Fernandez B, Garcia M, Gonzalez-Iglesias H, Pereiro R, et al. Gold nanoclusters as elemental label for the sequential quantification of apolipoprotein E and metallothionein 2A in individual human cells of the retinal pigment epithelium using single cell-ICP-MS. Anal Chim Acta. 2022;1203:339701. https://doi.org/10.1016/j.aca.2022.339701.

Article  CAS  PubMed  Google Scholar 

Voinsky I, Zoabi Y, Shomron N, Harel M, Cassuto H, Tam J, et al. Blood RNA Sequencing Indicates upregulated BATF2 and LY6E and downregulated ISG15 and MT2A expression in children with autism spectrum disorder. Int J Mol Sci. 2022;23(17):9843. https://doi.org/10.3390/ijms23179843.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Quan J, Shen Z, Zhang Z, Chen Z, Li L, et al. Metallothionein 2A (MT2A) controls cell proliferation and liver metastasis by controlling the MST1/LATS2/YAP1 signaling pathway in colorectal cancer. Cancer Cell Int. 2022;22(1):205. https://doi.org/10.1186/s12935-022-02623-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wahyudi LD, Yu SH, Cho MK. The effect of curcumin on the cadmium-induced mitochondrial apoptosis pathway by metallothionein 2A regulation. Life Sci. 2022;310:121076. https://doi.org/10.1016/j.lfs.2022.121076.

Article  CAS  PubMed  Google Scholar 

Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21. https://doi.org/10.1089/neu.1995.12.1.

Article  CAS  PubMed  Google Scholar 

Takenobu Y, Katsube N, Marsala M, Kondo K. Model of neuropathic intermittent claudication in the rat: methodology and application. J Neurosci Methods. 2001;104(2):191–8. https://doi.org/10.1016/s0165-0270(00)00342-3.

Article  CAS  PubMed  Google Scholar 

Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A. 2018;115(21):E4843-e4852. https://doi.org/10.1073/pnas.1719083115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 2014;344(2):174–9. https://doi.org/10.1016/j.canlet.2013.11.019.

Article  CAS  PubMed  Google Scholar 

Takahashi H, Aoki Y, Saito J, Nakajima A, Sonobe M, Akatsu Y, et al. Time course of changes in serum oxidative stress markers to predict outcomes for surgical treatment of lumbar degenerative disorders. Oxid Med Cell Longev. 2020;2020:5649767. https://doi.org/10.1155/2020/5649767.

Article  PubMed  PubMed Central  Google Scholar 

Zhai G, Liang W, Xu Y. High expression of lysophosphatidic acid induces nerve injury in LSS patients via AKT mediated NF-κB p65 pathway. Front Pharmacol. 2021;12:641435. https://doi.org/10.3389/fphar.2021.641435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J, Choi H, Park C, Jeon S, Yune T. Jmjd3 mediates neuropathic pain by inducing macrophage infiltration and activation in lumbar spinal stenosis animal model. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222413426.

Article  PubMed  PubMed Central  Google Scholar 

Fukutake T. Intermittent claudication secondary to spine and/or spinal cord diseases. Brain Nerve. 2021;73(6):671–83. https://doi.org/10.11477/mf.1416201818.

Article  PubMed  Google Scholar 

Deer T, Sayed D, Michels J, Josephson Y, Li S, Calodney AK. A review of lumbar spinal stenosis with intermittent neurogenic claudication: disease and diagnosis. Pain Med. 2019;20(Suppl 2):S32-s44.

Article  PubMed  PubMed Central  Google Scholar 

Desai A, Ball PA, Bekelis K, Lurie J, Mirza SK, Tosteson TD, et al. SPORT: Does incidental durotomy affect longterm outcomes in cases of spinal stenosis? Neurosurgery. 2015. https://doi.org/10.1227/01.neu.0000462078.58454.f4. (discussion S63).

Article  PubMed  Google Scholar 

Gao QY, Wei FL, Li T, Zhu KL, Du MR, Heng W, et al. Oblique lateral interbody fusion vs minimally invasive transforaminal lumbar interbody fusion for lumbar spinal stenosis: a retrospective cohort study. Front Med (Lausanne). 2022. https://doi.org/10.3389/fmed.2022.829426.

Article  PubMed  PubMed Central  Google Scholar 

Ahn Y, Oh HK, Kim H, Lee SH, Lee HN. Percutaneous endoscopic lumbar foraminotomy: an advanced surgical technique and clinical outcomes. Neurosurg

留言 (0)

沒有登入
gif