Modulation of the RAC1/MAPK/ERK signalling pathway by farnesyl diphosphate synthase regulates granulosa cells proliferation in polycystic ovary syndrome

Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol. 2021;17(9):521–33. https://doi.org/10.1038/s41574-021-00517-x.

Article  PubMed  Google Scholar 

Yuan X, Hu T, Zhao H, Huang Y, Ye R, Lin J, et al. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proc Natl Acad Sci U S A. 2016;113(10):2708–13. https://doi.org/10.1073/pnas.1523236113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14(4):367–78. https://doi.org/10.1093/humupd/dmn015.

Article  CAS  PubMed  Google Scholar 

Palomba S, Daolio J, La Sala GB. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab. 2017;28(3):186–98. https://doi.org/10.1016/j.tem.2016.11.008.

Article  CAS  PubMed  Google Scholar 

Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet. 2019;12(249):260. https://doi.org/10.2147/TACG.S200341.

Article  Google Scholar 

Bednarska S, Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: what’s new? Adv Clin Exp Med. 2017;26:359–67. https://doi.org/10.17219/acem/59380.

Article  PubMed  Google Scholar 

Chen M, He C, Zhu K, Chen Z, Meng Z, Jiang X, et al. Resveratrol ameliorates polycystic ovary syndrome via transzonal projections within oocyte-granulosa cell communication. Theranostics. 2022;12(2):782–95. https://doi.org/10.7150/thno.67167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji R, Jia F, Chen X, Gao Y, Yang J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/HO-1 activation. Phytother Res. 2023;37(4):1405–21. https://doi.org/10.1002/ptr.7749.

Article  CAS  PubMed  Google Scholar 

Salehi R, Asare-Werehene M, Wyse BA, Abedini A, Pan B, Gutsol A, et al. Granulosa cell-derived miR-379-5p regulates macrophage polarization in polycystic ovarian syndrome. Front Immunol. 2023;14:1104550. https://doi.org/10.3389/fimmu.2023.1104550.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munakata Y, Kawahara-Miki R, Shiratsuki S, Tasaki H, Itami N, Shirasuna K, et al. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes. J Reprod Dev. 2016;62(4):359–66. https://doi.org/10.1262/jrd.2016-022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Q, Miao R, Wang Y, Wang W, Zhao D, Niu Y, et al. ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21. FASEB J. 2023;37(2): e22693. https://doi.org/10.1096/fj.202201246RR.

Article  CAS  PubMed  Google Scholar 

Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl. 2021;14(7):1693–715. https://doi.org/10.1111/eva.13244.

Article  PubMed  PubMed Central  Google Scholar 

Tang T, Jiao J, Li D, Sun G, Lin L, Wang C, et al. The function of BAP18 on modulation of androgen receptor action in luteinized granulosa cells from normal weight women with and without PCOS. Mol Cell Endocrinol. 2021;527:111228. https://doi.org/10.1016/j.mce.2021.111228.

Article  CAS  PubMed  Google Scholar 

Nasri F, Zare M, Doroudchi M, Gharesi-Fard B. Proteome analysis of CD4(+) T cells reveals differentially expressed proteins in infertile polycystic ovary syndrome patients. Endocr Metab Immune Disord Drug Targets. 2021;21(11):1998–2004. https://doi.org/10.2174/1871530320666201119152323.

Article  CAS  PubMed  Google Scholar 

Manousopoulou A, Al-Daghri NM, Sabico S, Garay-Baquero DJ, Teng J, Alenad A, et al. Polycystic ovary syndrome and insulin physiology: an observational quantitative serum proteomics study in adolescent, normal-weight females. Proteomics Clin Appl. 2019;13(5): e1800184. https://doi.org/10.1002/prca.201800184.

Article  CAS  PubMed  Google Scholar 

Zhang C, Jin DD, Wang XY, Lou L, Yang J. Key enzymes for the mevalonate pathway in the cardiovascular system. J Cardiovasc Pharmacol. 2021;77(2):142–52. https://doi.org/10.1097/fjc.0000000000000952.

Article  CAS  PubMed  Google Scholar 

Seshacharyulu P, Rachagani S, Muniyan S, Siddiqui JA, Cruz E, Sharma S, et al. FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis. Oncogene. 2019;38(26):5265–80. https://doi.org/10.1038/s41388-019-0791-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu F, Wang FF, Lu XE, Dong MY, Sheng JZ, Lv PP, et al. Altered aquaporin expression in women with polycystic ovary syndrome: hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum Reprod. 2010;25(6):1441–50. https://doi.org/10.1093/humrep/deq078.

Article  CAS  PubMed  Google Scholar 

Ji X, Ye Y, Wang L, Liu S, Dong X. PDE4 inhibitor Roflumilast modulates inflammation and lipid accumulation in PCOS mice to improve ovarian function and reduce DHEA-induced granulosa cell apoptosis in vitro. Drug Dev Res. 2023. https://doi.org/10.1002/ddr.22027.

Article  PubMed  Google Scholar 

Zhang Q, Ren J, Wang F, Li M, Pan M, Zhang H, et al. Chinese herbal medicine alleviates the pathogenesis of polycystic ovary syndrome by improving oxidative stress and glucose metabolism via mitochondrial Sirtuin 3 signaling. Phytomedicine. 2023;109:154556. https://doi.org/10.1016/j.phymed.2022.154556.

Article  CAS  PubMed  Google Scholar 

Yang T, Huang Y, Zhou Y, Chen S, Wang H, Hu Y, et al. Simultaneous quantification of oestrogens and androgens in the serum of patients with benign prostatic hyperplasia by liquid chromatography-Tandem mass spectrometry. Andrologia. 2020;52(7): e13611. https://doi.org/10.1111/and.13611.

Article  CAS  PubMed  Google Scholar 

Geng X, Zhao J, Huang J, Li S, Chu W, Wang WS, et al. lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Mol Ther. 2021;29(3):1279–93. https://doi.org/10.1016/j.ymthe.2020.11.018.

Article  CAS  PubMed  Google Scholar 

Alesi S, Ee C, Moran LJ, Rao V, Mousa A. Nutritional Supplements and Complementary Therapies in Polycystic Ovary Syndrome. Adv Nutr. 2022;13(4):1243–66. https://doi.org/10.1093/advances/nmab141.

Article  CAS  PubMed  Google Scholar 

Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004.

Article  Google Scholar 

Zheng Q, Li Y, Zhang D, Cui X, Dai K, Yang Y, et al. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats. Cell Death Dis. 2017;8(10): e3145. https://doi.org/10.1038/cddis.2017.494.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dehghan Z, Mohammadi-Yeganeh S, Sameni M, Mirmotalebisohi SA, Zali H, Salehi M. Repurposing new drug candidates and identifying crucial molecules underlying PCOS pathogenesis based on bioinformatics analysis. Daru. 2021;29(2):353–66. https://doi.org/10.1007/s40199-021-00413-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Zhang X, Chen Y, Zhao C, Zhou W, Chen W, et al. Cardiac-specific deletion of FDPS induces cardiac remodeling and dysfunction by enhancing the activity of small GTP-binding proteins. J Pathol. 2021;255(4):438–50. https://doi.org/10.1002/path.5789.

Article  CAS  PubMed  Google Scholar 

Estienne A, Mellouk N, Bongrani A, Plotton I, Langer I, Ramé C, et al. Involvement of chemerin and CMKLR1 in the progesterone decrease by PCOS granulosa cells. Reproduction. 2021;162(6):427–36. https://doi.org/10.1530/rep-21-0265.

Article  CAS  PubMed  Google Scholar 

Lin L, Wang L. Knockdown of DPP4 promotes the proliferation and the activation of the CREB/aromatase pathway in ovarian granulosa cells. Mol Med Rep. 2022;25:73. https://doi.org/10.3892/mmr.2022.1258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin T, Lu J, Lv Q, Gong Y, Feng Z, Ying H, et al. Farnesyl diphosphate synthase regulated endothelial proliferation and autophagy during rat pulmonary arterial hypertension induced by monocrotaline. Mol Med. 2022;28(1):94. https://doi.org/10.1186/s10020-022-00511-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szkopińska A, Płochocka D. Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim Pol. 2005;52(1):45–55.

Article  PubMed  Google Scholar 

Ubba V, Soni UK, Chadchan S, Maurya VK, Kumar V, Maurya R, et al. RHOG-DOCK1-RAC1 signaling axis is perturbed in DHEA-induced polycystic ovary in rat model. Reprod Sci. 2017;24(5):738–52. https://doi.org/10.1177/1933719116669057.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif