The Role of Macrophages in Lung Fibrosis and the Signaling Pathway

Russell, R. E. K., Thorley, A., Culpitt, S. V., Dodd, S., Donnelly, L. E. & Demattos, C. et al. (2002). Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 283, L867–L873.

Article  CAS  PubMed  Google Scholar 

Guilliams, M., De Kleer, I., Henri, S., Post, S., Vanhoutte, L. & De Prijck, S. et al. (2013). Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine, 210, 1977–1992.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schyns, J., Bai, Q., Ruscitti, C., Radermecker, C., De Schepper, S. & Chakarov, S. et al. (2019). Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nature Communications, 10, 3964.

Article  PubMed  PubMed Central  Google Scholar 

He, S., Xie, L., Lu, J., & Sun, S. (2017). Characteristics and potential role of M2 macrophages in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 12, 3029 Dove Press.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saradna, A., Do, D. C., Kumar, S., Fu, Q.-L., & Gao, P. (2018). Macrophage polarization and allergic asthma. Translational Research, 191, 1–14.

Article  CAS  PubMed  Google Scholar 

Chen, X., Tang, J., Shuai, W., Meng, J., Feng, J. & Han, Z. (2020). Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflammation Research, 69, 883–895.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y.-C., Zou, X.-B., Chai, Y.-F. & Yao, Y.-M. (2014). Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences, 10, 520–529. Lake Haven: Ivyspring Int Publ.

Article  PubMed  PubMed Central  Google Scholar 

Booz, G. W., Altara, R., Eid, A. H., Wehbe, Z., Fares, S. & Zaraket, H. et al. (2020). Macrophage responses associated with COVID-19: A pharmacological perspective. European Journal of Pharmacology, 887, 173547.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barratt S. L., Creamer A., Hayton C., Chaudhuri N. Idiopathic Lung fibrosis (IPF): An Overview. Journal of Clinical Medicine [Internet]. Multidisciplinary Digital Publishing Institute (MDPI); 2018 [cited 2023 Apr 22];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111543/.

Paludan, S. R. & Mogensen, T. H. (2022). Innate immunological pathways in COVID-19 pathogenesis. Science Immunology, 7(67), eabm5505. https://doi.org/10.1126/sciimmunol.Abm5505.

Article  CAS  PubMed  Google Scholar 

Selvarajah, B., Azuelos, I., Anastasiou, D. & Chambers, R. C. (2021). Fibrometabolism-Anemerging therapeutic frontier in pulmonary fibrosis. Science Signaling, 14(697), eaay1027. https://doi.org/10.1126/scisignal.aay1027.

Article  CAS  PubMed  Google Scholar 

Rumende, C. M., Susanto, E. C., & Sitorus, T. P. (2021). The management of lung fibrosis in COVID-19. Acta Medica Indonesiana, 53, 233.

PubMed  Google Scholar 

Arora, S., Dev, K., Agarwal, B., Das, P., & Syed, M. A. (2018). Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology, 223, 383–396.

Article  CAS  PubMed  Google Scholar 

Chen, J., Zhou, R., Liang, Y., Fu, X., Wang, D. & Wang, C. (2019). Blockade of lncRNA-ASLNCS5088–enriched exosome generation in M2 macrophages by GW4869 dampens the effect of M2 macrophages on orchestrating fibroblast activation. The FASEB Journal, 33, 12200–12212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibbings, S. L., Thomas, S. M., Atif, S. M., McCubbrey, A. L., Desch, A. N. & Danhorn, T. et al. (2017). Three unique interstitial macrophages in the murine lung at steady state. American Journal of Respiratory Cell and Molecular Biology, 57, 66–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sennello, J. A., Misharin, A. V., Flozak, A. S., Berdnikovs, S., Cheresh, P. & Varga, J. et al. (2017). Lrp5/β-catenin signaling controls lung macrophage differentiation and inhibits resolution of fibrosis. American Journal of Respiratory Cell and Molecular Biology, 56, 191–201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., & Lum, J., et al. (2019). Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 363, eaau0964 American Association for the Advancement of Science.

Article  CAS  PubMed  Google Scholar 

Yunna, C., Mengru, H., Lei, W., & Weidong, C. (2020). Macrophage M1/M2 polarization. European Journal of Pharmacology, 877, 173090.

Article  PubMed  Google Scholar 

Yuan, H., et al. (2023). Crystalline silica-induced proinflammatory interstitial macrophage recruitment through notch3 signaling promotes the pathogenesis of silicosis. Environmental Science & Technology, 57(39), 14502–14514. https://doi.org/10.1021/acs.est.3c03980.

Article  CAS  Google Scholar 

Phan, T. H. G., Paliogiannis, P., Nasrallah, G. K., Giordo, R., Eid, A. H. & Fois, A. G. et al. (2021). Emerging cellular and molecular determinants of idiopathic lung fibrosis. Cellular and Molecular Life Sciences, 78, 2031–2057.

Article  CAS  PubMed  Google Scholar 

Sica, A. & Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo veritas. Journal of Clinical Investigation, 122, 787–795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russell, D. G., Huang, L., & VanderVen, B. C. (2019). Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology, 19, 291 NIH Public Access.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bronte, V. & Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5, 641–654. Nature Publishing Group.

Article  CAS  PubMed  Google Scholar 

Murray P. J. Macrophage Polarization. In: Julius D., editor. Annual Review of Physiology, Vol 79 [Internet]. Palo Alto: Annual Reviews; 2017 [cited 2023 Apr 23]. p. 541–66. Available from: https://www.webofscience.com/wos/alldb/full-record/WOS:000396049000024.

Osińska, I., Wołosz, D., & Domagała-Kulawik, J. (2014). Association between M1 and M2 macrophages in bronchoalveolar lavage fluid and tobacco smoking in patients with sarcoidosis. Polish Archives of Internal Medicine, 124, 359–364.

Article  PubMed  Google Scholar 

Zhang, L., Wang, Y., Wu, G., Xiong, W., Gu, W. & Wang, C.-Y. (2018). Macrophages: friend or foe in idiopathic lung fibrosis?. Respiratory Research, 19, 170

Article  PubMed  PubMed Central  Google Scholar 

Wang, L., Zhang, S., Wu, H., Rong, X. & Guo, J. (2019). M2b macrophage polarization and its roles in diseases. Journal of Leukocyte Biology, 106, 345–358.

Article  CAS  PubMed  Google Scholar 

Colin, S., Chinetti-Gbaguidi, G., & Staels, B. (2014). Macrophage phenotypes in atherosclerosis. Immunological Reviews, 262, 153–166.

Article  CAS  PubMed  Google Scholar 

Ji, W.-J., Ma, Y.-Q., Zhou, X., Zhang, Y.-D., Lu, R.-Y., & Sun, H.-Y., et al. (2014). Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. Journal of Immunological Methods, 403, 7–16.

Article  CAS  PubMed  Google Scholar 

Nair, M. G., Cochrane, D. W., & Allen, J. E. (2003). Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro. Immunology Letters, 85, 173–180.

Article  CAS  PubMed  Google Scholar 

Liu, T., Yu, H., Ullenbruch, M., Jin, H., Ito, T., & Wu, Z., et al. (2014). The in vivo fibrotic role of FIZZ1 in lung fibrosis. PLoS One, 9, e88362.

Article  PubMed  PubMed Central  Google Scholar 

Li, D., Guabiraba, R., Besnard, A.-G., Komai-Koma, M., Jabir, M. S. & Zhang, L. et al. (2014). IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. The Journal of Allergy and Clinical Immunology, 134, 1422

Article  CAS  PubMed  Google Scholar 

Tarique, A. A., Logan, J., Thomas, E., Holt, P. G., Sly, P. D. & Fantino, E. (2015). Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology, 53, 676–688. American Thoracic Society - AJRCMB.

Article  CAS  PubMed  Google Scholar 

Wang, K., Zu, C., Zhang, Y., Wang, X., Huan, X., Wang, L. Blocking TG2 attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting EMT. Respiratory Physiology & Neurobiology, 2020, https://doi.org/10.1016/j.resp.2020.103402.

Wang, J., Xu, L., Xiang, Z., Ren, Y., Zheng, X., Zhao, Q., Zhou, Q., Zhou, Y., Xu, L. & Wang, Y. (2020). Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206(+) M2-like macrophage polarization. Cell Death and Disease, 11(2), 136

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suarez-Carmona, M., Lesage, J., Cataldo, D. & Gilles, C. (2017). EMT and inflammation: inseparable actors of cancer progression. Molecular Oncology, 11(7), 805–823.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif