Cell-Cycle-related Protein Centromere Protein F Deficiency Inhibits Cervical Cancer Cell Growth by Inducing Ferroptosis Via Nrf2 Inactivation

Siegel, R., Miller, K., Fuchs, H. & & Jemal, A. (2021). Cancer statistics. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654.

Article  PubMed  Google Scholar 

Burmeister, C., Khan, S., Schäfer, G., Mbatani, N., Adams, T., Moodley, J., & Prince, S. (2022). Cervical cancer therapies: current challenges and future perspectives. Tumour Virus Research, 13, 200238. https://doi.org/10.1016/j.tvr.2022.200238.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, P., Jhingran, A., Oaknin, A., & Denny, L. (2019). Cervical cancer. Lancet, 393(10167), 169–182.

Article  PubMed  Google Scholar 

FIGO (International Federation of Gynecology and Obstetrics) 26th Annual Report on the Results of Treatment in Gynecological Cancer. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics 2006, S1–257. https://doi.org/10.1016/s0020-7292(06)60025-8.

Tsuda, N., Watari, H., & Ushijima, K. (2016). Chemotherapy and molecular targeting therapy for recurrent cervical cancer. Chinese Journal of Cancer Research, 28(2), 241–253. https://doi.org/10.21147/j.issn.1000-9604.2016.02.14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, B., Chen, L., Zhang, W., Li, Y., Zhang, Y., Gao, Y., Teng, X., Zou, L., Wang, Q., & Jia, H., et al. (2020). TOP2A and CENPF are synergistic master regulators activated in cervical cancer. BMC Medical Genomics, 13(1), 145. https://doi.org/10.1186/s12920-020-00800-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rattner, J., Rao, A., Fritzler, M., Valencia, D. & & Yen, T. (1993). CENP-F is a .ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motility and The Cytoskeleton, 26(3), 214–226. https://doi.org/10.1002/cm.970260305.

Article  CAS  PubMed  Google Scholar 

Ma, L., Zhao, X., & Zhu, X. (2006). Mitosin/CENP-F in mitosis, transcriptional control, and differentiation. Journal of Biomedical Science, 13(2), 205–213. https://doi.org/10.1007/s11373-005-9057-3.

Article  CAS  PubMed  Google Scholar 

Varis, A., Salmela, A., & Kallio, M. (2006). Cenp-F (mitosin) is more than a mitotic marker. Chromosoma, 115(4), 288–295. https://doi.org/10.1007/s00412-005-0046-0.

Article  CAS  PubMed  Google Scholar 

Yang, X., Miao, B., Wei, C., Dong, R., Gao, P., Zhang, X., Lu, J., Gao, C., Wang, X., & Sun, H., et al. (2019). Lymphoid-specific helicase promotes the growth and invasion of hepatocellular carcinoma by transcriptional regulation of centromere protein F expression. Cancer Science, 110(7), 2133–2144. https://doi.org/10.1111/cas.14037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, E., Qin, X., Peng, K., Li, Q., Tang, C., Wei, Y., Yu, S., Gan, L., & Liu, T. (2019). HnRNPR-CCNB1/CENPF axis contributes to gastric cancer proliferation and metastasis. Aging, 11(18), 7473–7491. https://doi.org/10.18632/aging.102254.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Q., Xu, H., Zhu, J., Feng, K., & Hu, C. (2020). LncRNA MCM3AP-AS1 promotes breast cancer progression via modulating miR-28-5p/CENPF axis. Biomedicine & Pharmacotherapy, 128, 110289. https://doi.org/10.1016/j.biopha.2020.110289.

Article  CAS  Google Scholar 

Li, M., Zhang, M., Dong, H., Li, A., Teng, H., Liu, A., Xu, N., & Qu, Y. (2021). Overexpression of CENPF is associated with progression and poor prognosis of lung adenocarcinoma. International Journal of Medical Sciences, 18(2), 494–504. https://doi.org/10.7150/ijms.49041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, Y., Liu, L., Zeng, T., Zhu, Y., Li, J., Chen, L., Li, Y., Yuan, Y., Ma, S., & Guan, X. (2013). Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 436(4), 711–718. https://doi.org/10.1016/j.bbrc.2013.06.021.

Article  CAS  PubMed  Google Scholar 

Shin, D., Kim, E., Lee, J., & Roh, J. (2018). Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radical Biology & Medicine, 129, 454–462. https://doi.org/10.1016/j.freeradbiomed.2018.10.426.

Article  CAS  Google Scholar 

Chen, P., Wu, J., Ding, C., Lin, C., Pan, S., Bossa, N., Xu, Y., Yang, W., Mathey-Prevot, B., & Chi, J. (2020). Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death and Differentiation, 27(3), 1008–1022. https://doi.org/10.1038/s41418-019-0393-7.

Article  CAS  PubMed  Google Scholar 

Liang, Y., Wang, Y., Zhang, Y., Ye, F., Luo, D., Li, Y., Jin, Y., Han, D., Wang, Z., & Chen, B., et al. (2023). HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer. Cell Death & Disease, 14(7), 434 https://doi.org/10.1038/s41419-023-05972-0.

Article  CAS  Google Scholar 

Sun, J., Huang, J., Lan, J., Zhou, K., Gao, Y., Song, Z., Deng, Y., Liu, L., Dong, Y., & Liu, X. (2019). Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell International, 19, 264. https://doi.org/10.1186/s12935-019-0986-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, H., Wang, X., Wu, F., Mo, X., Hu, C., Wang, M., Xu, H., Yao, C., Xia, H., Lan, L. Centromere protein F is identified as a novel therapeutic target by genomics profile and contributing to the progression of pancreatic cancer. Genomics 2021, (1 Pt.2), 113. https://doi.org/10.1016/j.ygeno.2020.10.039.

Xiaofei, J., Mingqing, S., Miao, S., Yizhen, Y., Shuang, Z., Qinhua, X., & Kai, Z. (2021). Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway. Biochemical and Biophysical Research Communications, 545, 81–88. https://doi.org/10.1016/j.bbrc.2021.01.028.

Article  CAS  PubMed  Google Scholar 

Xiong, J., Nie, M., Fu, C., Chai, X., Zhang, Y., He, L., Sun, S. Hypoxia enhances HIF1α transcription activity by upregulating KDM4A and mediating H3K9me3, thus inducing ferroptosis resistance in cervical cancer cells. Stem Cells International 2022. https://doi.org/10.1155/2022/1608806.

Zhao, M., Liu, P., Sun, C., Pei, L., & Huang, Y. (2022). In VitroPropofol augments paclitaxel-induced cervical cancer cell ferroptosis. Frontiers in Pharmacology, 13, 816432. https://doi.org/10.3389/fphar.2022.816432.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren, Z., Hu, M., Wang, Z., Zheng, H. Ferroptosis-related genes in lung adenocarcinoma: prognostic signature and immune, drug resistance, mutation analysis. Frontiers in Genetics 2021. https://doi.org/10.3389/fgene.2021.672904.

Liu, J., Wang, Y., Meng, H., Yin, Y., Zhu, H., & Ni, T. (2021). Identification of the prognostic signature associated with tumor immune microenvironment of uterine corpus endometrial carcinoma based on ferroptosis-related genes. Frontiers in Cell and Developmental Biology, 9, 735013. https://doi.org/10.3389/fcell.2021.735013.

Article  PubMed  PubMed Central  Google Scholar 

Xu, T., Ding, W., Ji, X., Ao, X., Liu, Y., Yu, W., Wang, J. Molecular mechanisms of ferroptosis and its role in cancer therapy. Journal of Cellular and Molecular Medicine 2019, 23 (8). https://doi.org/10.1111/jcmm.14511.

Garrick, M. D., Singleton, S. T., Vargas, F., Kuo, H. C., Zhao, L., KNÖPFEL, M., Davidson, T., Costa, M., Paradkar, P., Roth, J. A. DMT1: Which metals does it transport? Biological Research 2006, 39 (1). https://doi.org/10.4067/S0716-97602006000100009.

Hirschhorn, T., & Stockwell, B. (2019). The development of the concept of ferroptosis. Free Radical Biology & Medicine, 133, 130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043.

Article  CAS  Google Scholar 

Gamage, S. M. K., Lee, K. T. W., Dissabandara, D. L. O., Lam, K. Y., & Gopalan, V. (2021). Dual role of heme iron in cancer; promotor of carcinogenesis and an inducer of tumour suppression. Experimental and Molecular Pathology, 120(6), 104642. https://doi.org/10.1016/j.yexmp.2021.104642.

Article  CAS  PubMed  Google Scholar 

Fustinoni-Reis, A., Arruda, S., Dourado, L., da Cunha, M., & Siqueira, E. (2016). Tucum-Do-Cerrado (Bactris setosa Mart.) consumption modulates iron homeostasis and prevents iron-induced oxidative stress in the rat liver. Nutrients, 8(2), 38 https://doi.org/10.3390/nu8020038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, S., Wu, D., Li, L., Li, J., & Xu, Y. (2021). TBHQ attenuates ferroptosis against 5-fluorouracil-induced intestinal epithelial cell injury and intestinal mucositis via activation of Nrf2. Cellular & Molecular Biology Letters, 26(1), 48 https://doi.org/10.1186/s11658-021-00294-5.

Article  CAS  Google Scholar 

Boss, A., Freeborn, R., Duriancik, D., Kennedy, R., Gardner, E., & Rockwell, C. (2018). The Nrf2 activator tBHQ inhibits the activation of primary murine natural killer cells. Food and Chemical Toxicology, 121, 231–236. https://doi.org/10.1016/j.fct.2018.08.067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng, X., Zhang, C., Guo, Y., Han, Y., Wang, C., Chu, H., Kong, L., & Ma, H. (2020). TBHQ attenuates neurotoxicity induced by methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT signaling pathways. Oxidative Medicine and Cellular Longevity, 2020, 8787156. https://doi.org/10.1155/2020/8787156.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif