Evaluation of the MTS™ aztreonam-avibactam strip (Liofilchem) on New Delhi metallo-β-lactamase-producing Enterobacterales

Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA et al (2018) Carbapenemase-producing organisms: a global scourge. Clin Infect Dis Off Publ Infect Dis Soc Am 3(66):1290–1297. https://doi.org/10.1093/cid/cix893

Article  CAS  Google Scholar 

Logan LK, Weinstein RA (2017) The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 15(215):S28-36. https://doi.org/10.1093/infdis/jiw282

Article  CAS  Google Scholar 

Poirel L, Ortiz de la Rosa JM, Sakaoglu Z, Kusaksizoglu A, Sadek M, Nordmann P (2022) NDM-35-producing ST167 Escherichia coli highly resistant to β-lactams including cefiderocol. Antimicrob Agents Chemother. 16(66):0031122. https://doi.org/10.1128/aac.00311-22

Article  CAS  Google Scholar 

Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A et al (2022) Last resort beta-lactam antibiotics for treatment of New-Delhi metallo-beta-lactamase producing Enterobacterales and other difficult-to-treat resistance in gram-negative bacteria: a real-life study. Front Cell Infect Microbiol 12:1048633. https://doi.org/10.3389/fcimb.2022.1048633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcone M, Daikos GL, Tiseo G, Bassoulis D, Giordano C, Galfo V et al (2021) Efficacy of Ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis Off Publ Infect Dis Soc Am 1(72):1871–1878. https://doi.org/10.1093/cid/ciaa586

Article  CAS  Google Scholar 

Mauri C, Maraolo AE, Di Bella S, Luzzaro F, Principe L (2021) The revival of aztreonam in combination with avibactam against metallo-β-lactamase-producing gram-negatives: a systematic review of in vitro studies and clinical cases. Antibiot Basel Switz 20(10):1012. https://doi.org/10.3390/antibiotics10081012

Article  CAS  Google Scholar 

Wenzler E, Deraedt MF, Harrington AT, Danizger LH (2017) Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-β-lactamase-producing gram-negative pathogens. Diagn Microbiol Infect Dis 88:352–354. https://doi.org/10.1016/j.diagmicrobio.2017.05.009

Article  CAS  PubMed  Google Scholar 

Emeraud C, Escaut L, Boucly A, Fortineau N, Bonnin RA, Naas T et al (2019) Aztreonam plus clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-β-lactamase-producing gram-negative bacteria. Antimicrob Agents Chemother 63:e00010-19. https://doi.org/10.1128/AAC.00010-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merad Y, Conrad A, Brosset S, Schmidt A, Hanriat C, Lustig S et al (2023) Case report: continuous infusions of ceftazidime-avibactam and aztreonam in combination through elastomeric infusors for 12 weeks for the treatment of bone and joint infections due to metallo-β-lactamase producing Enterobacterales. Front Med 10:1224922. https://doi.org/10.3389/fmed.2023.1224922

Article  Google Scholar 

Singh R, Kim A, Tanudra MA, Harris JJ, McLaughlin RE, Patey S et al (2015) Pharmacokinetics/pharmacodynamics of a β-lactam and β-lactamase inhibitor combination: a novel approach for aztreonam/avibactam. J Antimicrob Chemother 70:2618–2626. https://doi.org/10.1093/jac/dkv132

Article  CAS  PubMed  Google Scholar 

Sadek M, Juhas M, Poirel L, Nordmann P (2020) Genetic features leading to reduced susceptibility to aztreonam-avibactam among metallo-β-lactamase-producing Escherichia coli isolates. Antimicrob Agents Chemother 17(64):e01659-e1720. https://doi.org/10.1128/AAC.01659-20

Article  Google Scholar 

Periasamy H, Joshi P, Palwe S, Shrivastava R, Bhagwat S, Patel M (2020) High prevalence of Escherichia coli clinical isolates in India harbouring four amino acid inserts in PBP3 adversely impacting activity of aztreonam/avibactam. J Antimicrob Chemother 1(75):1650–1651. https://doi.org/10.1093/jac/dkaa021

Article  CAS  Google Scholar 

Alm RA, Johnstone MR, Lahiri SD (2015) Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother 70:1420–1428. https://doi.org/10.1093/jac/dku568

Article  CAS  PubMed  Google Scholar 

Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA (2017) In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother 61:e00472-e517. https://doi.org/10.1128/AAC.00472-17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wise MG, Karlowsky JA, Mohamed N, Kamat S, Sahm DF (2023) In vitro activity of aztreonam-avibactam against Enterobacterales isolates collected in Latin America, Africa/Middle East, Asia, and Eurasia for the ATLAS Global Surveillance Program in 2019–2021. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 42:1135–1143. https://doi.org/10.1007/s10096-023-04645-2

Article  CAS  Google Scholar 

Khan A, Erickson SG, Pettaway C, Arias CA, Miller WR, Bhatti MM (2021) Evaluation of susceptibility testing methods for aztreonam and ceftazidime-avibactam combination therapy on extensively drug-resistant gram-negative organisms. Antimicrob Agents Chemother 18(65):e0084621. https://doi.org/10.1128/AAC.00846-21

Article  Google Scholar 

Jayol A, Nordmann P, Poirel L, Dubois V (2018) Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother 1(73):542–544. https://doi.org/10.1093/jac/dkx393

Article  CAS  Google Scholar 

Viguier C, Bouvier M, Sadek M, Kerbol A, Poirel L, Nordmann P (2023) Rapid Aztreonam/Avibactam NP test for detection of aztreonam/avibactam susceptibility/resistance in Enterobacterales. J Clin Microbiol 24(61):e0058823. https://doi.org/10.1128/jcm.00588-23

Article  CAS  Google Scholar 

Liofilchem. Technical Sheet MTS Aztreonam-avibactam 0.016/4–256/4. Rev.0 / 05.10.2022. https://www.liofilchem.com/

European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 14.0, valid from 2024–01–01. https://www.eucast.org/clinical_breakpoints

Jousset AB, Bouabdallah L, Birer A, Rosinski-Chupin I, Mariet J-F, Oueslati S et al (2023) Population analysis of Escherichia coli sequence type 361 and reduced cefiderocol susceptibility. France Emerg Infect Dis 29:1877–1881. https://doi.org/10.3201/eid2909.230390

Article  PubMed  Google Scholar 

Verschelden G, Noeparast M, Stoefs A, Van Honacker E, Vandoorslaer K, Vandervore L et al (2023) Aztreonam-avibactam synergy, a validation and comparison of diagnostic tools. Front Microbiol 14:1322180. https://doi.org/10.3389/fmicb.2023.1322180

Article  PubMed  PubMed Central  Google Scholar 

Deschamps M, Dauwalder O, Dortet L (2023) Comparison of ETEST® superposition method and the MTSTM Aztreonam-avibactam strip with the reference method for aztreonam/avibactam susceptibility testing. J Antimicrob Chemother 29:407. https://doi.org/10.1093/jac/dkad407

Article  Google Scholar 

留言 (0)

沒有登入
gif