MAST® D72C test: a novel option for ESBL, AmpC and carbapenemase detection

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

Article  PubMed  Google Scholar 

Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976. https://doi.org/10.1128/AAC.01009-09

Article  CAS  PubMed  Google Scholar 

Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, Westblade LF (2018) Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. Apr 3;66(8):1290–1297. https://doi.org/10.1093/cid/cix893

Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18:657–686. https://doi.org/10.1128/CMR.18.4.657-686.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poirel L, Fernández J, Nordmann P (2016) Comparison of three biochemical tests for rapid detection of extended-spectrum-β-lactamase-producing enterobacteriaceae. J Clin Microbiol 54:423–427. https://doi.org/10.1128/JCM.01840-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawamoto Y, Kosai K, Yamakawa H, Kaku N, Uno N, Morinaga Y et al (2019) Detection of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae using the MALDI Biotyper Selective Testing of Antibiotic Resistance-β-Lactamase (MBT STAR-BL) assay. J Microbiol Methods 160:154–156. https://doi.org/10.1016/j.mimet.2019.03.019

Article  CAS  PubMed  Google Scholar 

Volland H, Ballesté-Delpierre C, Szabó D, Gonzalez C, Takissian J, Aszalos AZ et al (2022) Rapid detection of CTX-M-type ESBLs and carbapenemases directly from biological samples using the BL-DetecTool. J Antimicrob Chemother 77:2867–2875. https://doi.org/10.1093/jac/dkac264

Article  CAS  PubMed  Google Scholar 

Edquist P, Ringman M, Liljequist BO, Wisell KT, Giske CG (2013) Phenotypic detection of plasmid-acquired AmpC in Escherichia coli—evaluation of screening criteria and performance of two commercial methods for the phenotypic confirmation of AmpC production. Eur J Clin Microbiol Infect Dis 32:1205–1210. https://doi.org/10.1007/s10096-013-1869-x

Article  CAS  PubMed  Google Scholar 

Nourrisson C, Tan RN, Hennequin C, Gibold L, Bonnet R, Robin F (2015) The MAST® D68C test: an interesting tool for detecting extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 34:975–983. https://doi.org/10.1007/s10096-014-2305-6

Article  CAS  PubMed  Google Scholar 

Zamudio R, Boerlin P, Beyrouthy R, Madec J-Y, Schwarz S, Mulvey MR et al (2022) Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun 13:7490. https://doi.org/10.1038/s41467-022-34970-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliver A, Weigel LM, Rasheed JK, McGowan JE, Raney P, Tenover FC (2002) Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli. Antimicrob Agents Chemother 46:3829–3836. https://doi.org/10.1128/AAC.46.12.3829-3836.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comité de l’Antibiogramme de la Société Française de Microbiologie. Recommandations 2023. 2023

EUCAST subcommittee for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance (2017) EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance [Internet]. https://www.eucast.org/resistance_mechanisms

Holma T, Torvikoski J, Friberg N, Nevalainen A, Tarkka E, Antikainen J et al (2022) Rapid molecular detection of pathogenic microorganisms and antimicrobial resistance markers in blood cultures: evaluation and utility of the next-generation FilmArray Blood Culture Identification 2 panel. Eur J Clin Microbiol Infect Dis 41:363–371. https://doi.org/10.1007/s10096-021-04314-2

Article  CAS  PubMed  Google Scholar 

Traczewski MM, Carretto E, Canton R, Moore NM, Carba-R Study Team (2018) Multicenter evaluation of the Xpert Carba-R Assay for detection of carbapenemase genes in gram-negative isolates. J Clin Microbiol 56:e00272-18. https://doi.org/10.1128/JCM.00272-18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P (2015) Evaluation of the RAPIDEC® CARBA NP, the Rapid CARB Screen® and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 70:3014–3022. https://doi.org/10.1093/jac/dkv213

Article  CAS  PubMed  Google Scholar 

Correa-Martínez CL, Idelevich EA, Sparbier K, Kostrzewa M, Becker K (2019) Rapid detection of Extended-Spectrum β-Lactamases (ESBL) and AmpC β-Lactamases in enterobacterales: development of a screening panel using the MALDI-TOF MS-based direct-on-target microdroplet growth assay. Front Microbiol 10:13. https://doi.org/10.3389/fmicb.2019.00013

Article  PubMed  PubMed Central  Google Scholar 

Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T (2011) Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3222–3227. https://doi.org/10.1128/JCM.00984-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baeza LL, Pfennigwerth N, Greissl C, Göttig S, Saleh A, Stelzer Y et al (2019) Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect 25:1286.e9-1286.e15. https://doi.org/10.1016/j.cmi.2019.03.003

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif