Structure predictions and functional insights into Amidase_3 domain containing N-acetylmuramyl-L-alanine amidases from Deinococcus indicus DR1

Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008;32:149–67.

Article  CAS  PubMed  Google Scholar 

Vollmer W, Seligman SJ. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 2010;18:59–66.

Article  CAS  PubMed  Google Scholar 

Shambhavi G, Kumar CP, Manjula R, Peptidoglycan. Structure, synthesis, and Regulation. EcoSal Plus. 2021;9.

Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol. 2012;10:123–36.

Article  CAS  Google Scholar 

Den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev. 2008;32:321–44.

Article  Google Scholar 

Koch AL. Additional arguments for the key role of smart autolysins in the enlargement of the wall of gram-negative bacteria. Res Microbiol. 1990;141:529–41.

Article  CAS  PubMed  Google Scholar 

Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. 2008. https://doi.org/10.1111/j.1574-6976.2007.00099.x.

van Heijenoort J. Peptidoglycan hydrolases of Escherichia coli. Microbiol Mol Biol Rev. 2011;75:636–63.

Article  PubMed  PubMed Central  Google Scholar 

Höltje J-V. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol. 1995;164:243–54.

Article  PubMed  Google Scholar 

C RK. Molecular Control of bacterial death and Lysis. Microbiol Mol Biol Rev. 2008;72:85–109.

Article  Google Scholar 

Uehara T, Parzych KR, Dinh T, Bernhardt TG. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 2010;29:1412–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahone CR, Goley ED. Bacterial cell division at a glance. J Cell Sci. 2020;133:jcs237057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohs PDA, Bernhardt TG. Growth and division of the Peptidoglycan Matrix. Annu Rev Microbiol. 2021;75:315–36.

Article  CAS  PubMed  Google Scholar 

Adams DW, Errington J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol. 2009;7:642–53.

Article  CAS  PubMed  Google Scholar 

Heidrich C, Templin MF, Ursinus A, Merdanovic M, Berger J, Schwarz H, et al. Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol. 2001;41:167–78.

Article  CAS  PubMed  Google Scholar 

Xu X, Li J, Chua W-Z, Pages MA, Shi J, Hermoso JA et al. Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. Proceedings of the National Academy of Sciences. 2023;120:e2301897120.

Priyadarshini R, De Pedro MA, Young KD. Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J Bacteriol. 2007;189:5334–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell wall hydrolases in Bacteria: insight on the diversity of Cell Wall Amidases, glycosidases and peptidases toward Peptidoglycan. Front Microbiol. 2019;10.

Uehara T, Bernhardt TG. More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol. 2011;14:698–703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christoph H, Astrid U, Jürgen B, Heinz S, Joachim-Volker H. Effects of multiple deletions of Murein hydrolases on viability, Septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol. 2002;184:6093–9.

Article  Google Scholar 

Kerff F, Petrella S, Mercier F, Sauvage E, Herman R, Pennartz A, et al. Specific structural features of the N-Acetylmuramoyl-l-Alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J Mol Biol. 2010;397:249–59.

Article  CAS  PubMed  Google Scholar 

Bernhardt TG, De Boer PAJ. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol. 2003;48:1171–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thuy TPN. A fail-safe mechanism in the septal Ring Assembly Pathway generated by the sequential recruitment of cell separation amidases and their activators. J Bacteriol. 2011;193:4973–83.

Article  Google Scholar 

Hara H, Narita S, Karibian D, Park JT, Yamamoto Y, Nishimura Y. Identification and characterization of the Escherichia coli envC gene encoding a periplasmic coiled-coil protein with putative peptidase activity. FEMS Microbiol Lett. 2002;212:229–36.

Article  CAS  PubMed  Google Scholar 

Peters NT, Morlot C, Yang DC, Uehara T, Vernet T, Bernhardt TG. Structure–function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Mol Microbiol. 2013;89:690–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsuyoshi U, Thuy D. LytM-Domain factors are required for daughter cell separation and Rapid Ampicillin-Induced lysis in Escherichia coli. J Bacteriol. 2009;191:5094–107.

Article  Google Scholar 

Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proceedings of the National Academy of Sciences. 2011;108:E1052–60.

Tsang M-J, Yakhnina AA, Bernhardt TG. NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genet. 2017;13:e1006888.

Article  PubMed  PubMed Central  Google Scholar 

Andrea M, Tobias D, Laura A, CM C, Felipe MDB. Cell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activators. J Bacteriol. 2014;196:3937–48.

Article  Google Scholar 

Dubey A, Priyadarshini R. Amidase activity is essential for medial localization of AmiC in Caulobacter crescentus. Curr Genet. 2018;64:661–75.

Article  CAS  PubMed  Google Scholar 

Zielińska A, Billini M, Möll A, Kremer K, Briegel A, Izquierdo Martinez A, et al. LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus. Mol Microbiol. 2017;106:419–38.

Article  PubMed  Google Scholar 

Meier EL, Daitch AK, Yao Q, Bhargava A, Jensen GJ, Goley ED. FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus. PLoS Genet. 2017;13.

GD L. AmiC functions as an N-Acetylmuramyl-l-Alanine amidase necessary for cell separation and can promote Autolysis in Neisseria gonorrhoeae. J Bacteriol. 2006;188:7211–21.

Article  Google Scholar 

Klöckner A, Otten C, Derouaux A, Vollmer W, Bühl H, De Benedetti S, et al. AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae. Nat Commun. 2014;5:4201.

Article  PubMed  Google Scholar 

Chauhan D, Srivastava P, Yennamalli R, Priyadarshini R. Draft genome sequence of Deinococcus indicus DR1, a novel strain isolated from a Freshwater Wetland. Genome Announc. 2017;5:e00754–17.

Article  PubMed  PubMed Central  Google Scholar 

Poindexter JS. Biological properties and classification of the Caulobacter group. Bacteriol Rev. 1964;28:231–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Naismith JH. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008;8:91.

Article  PubMed  PubMed Central  Google Scholar 

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

Article  CAS  PubMed  Google Scholar 

Richa P, PD L. Daughter cell separation by Penicillin-Binding Proteins and Peptidoglycan Amidases in Escherichia coli. J Bacteriol. 2006;188:5345–55.

Article  Google Scholar 

Hayashi K. A rapid determination of sodium dodecyl sulfate with methylene blue. Anal Biochem. 1975;67:503–6.

Article  CAS  PubMed  Google Scholar 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif