Intact FGF23 concentration in healthy infants, children, and adolescents, and diagnostic usefulness in patients with X-linked hypophosphatemic rickets

Erben RG (2018) Physiological actions of fibroblast growth factor-23. Front Endocrinol 9:267. https://doi.org/10.3389/fendo.2018.00267

Article  Google Scholar 

Ho BB, Bergwitz C (2021) FGF23 signalling and physiology. J Mol Endocrinol 66:R23–R32. https://doi.org/10.1530/JME-20-0178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukumoto S (2021) FGF23-related hypophosphatemic rickets/osteomalacia: diagnosis and new treatment. J Mol Endocrinol 66:R57–R65. https://doi.org/10.1530/JME-20-0089

Article  CAS  PubMed  Google Scholar 

Rausch S, Foller M (2022) The regulation of FGF23 under physiological and pathophysiological conditions. Pflügers Archiv Eur J Physiol 474:281–292. https://doi.org/10.1007/s00424-022-02668-w

Article  CAS  Google Scholar 

Vervloet MG (2022) Shedding light on the complex regulation of FGF23. Metabolites 12:401. https://doi.org/10.3390/metabo12050401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imel EA, Econs MJ (2005) Fibroblast growth factor 23: roles in health and disease. J Am Soc Nephrol 16:2565–2575. https://doi.org/10.1681/ASN.2005050573

Article  CAS  PubMed  Google Scholar 

Carpenter TO (2012) The expanding family of hypophosphatemic syndromes. J Bone Miner Metab 30:1–9. https://doi.org/10.1007/s00774-011-0340-2

Article  CAS  PubMed  Google Scholar 

Bar L, Stournaras C, Lang F, Foller M (2019) Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 593:1879–1900. https://doi.org/10.1002/1873-3468.13494

Article  CAS  PubMed  Google Scholar 

Boyce AM, Lee AE, Roszko KL, Gafni RI (2020) Hyperphosphatemic tumoral calcinosis: pathogenesis, clinical presentation, and challenges in management. Front Endocrinol 11:293. https://doi.org/10.3389/fendo.2020.00293

Article  Google Scholar 

Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in Southern Denmark. Eur J Endocrinol 160:491–497. https://doi.org/10.1530/EJE-08-0818

Article  CAS  PubMed  Google Scholar 

Rafaelsen S, Johansson S, Raeder H, Bjerknes R (2016) Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur J Endocrinol 174:125–136. https://doi.org/10.1530/EJE-15-0515

Article  CAS  PubMed  Google Scholar 

Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A (2019) Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15:435–455. https://doi.org/10.1038/s41581-019-0152-5

Article  PubMed  PubMed Central  Google Scholar 

Baroncelli GI, Mora S (2021) X-linked hypophosphatemic rickets: multisystemic disorder in children requiring multidisciplinary management. Front Endocrinol 12:688309. https://doi.org/10.3389/fendo.2021.688309

Article  Google Scholar 

Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M (2003) Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142:324–331. https://doi.org/10.1067/mpd.2003.119

Article  CAS  PubMed  Google Scholar 

Baroncelli GI, Angiolini M, Ninni E, Galli V, Saggese R, Giuca MR (2006) Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent 7:61–66

CAS  PubMed  Google Scholar 

Baroncelli GI, Zampollo E, Manca M, Toschi B, Bertelloni S, Michelucci A, Isola A, Bulleri A, Peroni D, Giuca MR (2021) Pulp chamber features, prevalence of abscesses, disease severity, and PHEX mutation in X-linked hypophosphatemic rickets. J Bone Miner Metab 39:212–223. https://doi.org/10.1007/s00774-020-01136-8

Article  CAS  PubMed  Google Scholar 

Fischer DC, Mischek A, Wolf S, Rahn A, Salweski B, Kundt G, Haffner D (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49:546–553. https://doi.org/10.1258/acb.2012.011274

Article  CAS  PubMed  Google Scholar 

Gkentzi D, Efthymiadou A, Kritikou D, Chrysis D (2014) Fibroblast growth factor 23 and Klotho serum levels in healthy children. Bone 66:8–14. https://doi.org/10.1016/j.bone.2014.05.012

Article  CAS  PubMed  Google Scholar 

Mitchell DM, Juppner H, Burnett-Bowie SAM (2017) FGF23 is not associated with age-related changes in phosphate, but enhances renal calcium reabsorption in girls. J Clin Endocrinol Metab 102:1151–1160. https://doi.org/10.1210/jc.2016-4038

Article  PubMed  PubMed Central  Google Scholar 

Stanczyk M, Chrul S, Wyka K, Tkaczyk M (2021) Serum intact fibroblast growth factor 23 in healthy paediatric population. Open Med 16:1022–1027. https://doi.org/10.1515/med-2021-0288

Article  CAS  Google Scholar 

Brescia V, Fontana A, Lovero R, Capobianco C, Vita Marsico S, De Chirico T, Pinto C, Varraso L, Cazzolla AP, Di Serio F (2022) Determination of iFGF23 upper reference limits (URL) in healthy pediatric population, for its better correct use. Front Endocrinol 13:1018523. https://doi.org/10.3389/fendo.2022.1018523

Article  Google Scholar 

Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ (2010) Treatment of XLH with calcitriol and phosphate increases circulating FGF23 concentrations. J Clin Endocrinol Metab 95:1846–1850. https://doi.org/10.1210/jc.2009-1671

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeman JV, Cole TJ, Chinn S, Jones PRM, White EM, Preece MA (1995) Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child 73:17–24. https://doi.org/10.1136/adc.73.1.17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity and stages of puberty. Arch Dis Child 51:170–179. https://doi.org/10.1136/adc.51.3.170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka T, Yokoya S, Hoshino Y, Hiro S, Ohki N (2018) Long-term safety and efficacy of daily recombinant human growth hormone treatment in Japanese short children born small for gestational age: final report from an open and multicenter study. Clin Pediatr Endocrinol 27:145–157. https://doi.org/10.1297/cpe.27.145

Article  PubMed  PubMed Central  Google Scholar 

Souberbielle GC, Prie D, Piketty ML, Rothenbuhler A, Delanaye P, Chanson P, Cavalier E (2017) Evaluation of a new fully automated assay for plasma intact FGF23. Calcif Tissue Int 101:510–518. https://doi.org/10.1007/s00223-017-0307-y

Article  CAS  PubMed  Google Scholar 

Van Helden J, Weiskirchen R (2018) Technical and diagnostic performance of a new fully automated immunoassay for the determination of intact fibroblast growth factor 23 (FGF23). Scand J Clin Lab Investig 78:584–590. https://doi.org/10.1080/00365513.2018.1526411

Article  CAS  Google Scholar 

Horowitz GL, Altaie CS, Boyd JC, Ceriotti F, Garg U, Horn P, Pesce A, Sine HE, Zakowski JCLSI (2008) Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guideline, 3rd edn. Clinical and Laboratory Standards Institute, Wayne

Google Scholar 

Stark H, Eisenstein B, Tieder M, Rachmel A, Alpert G (1986) Direct measurement of TP/GFR: a simple and reliable parameter of renal phosphate handling. Nephron 44:125–128. https://doi.org/10.1159/000184216

Article  CAS  PubMed  Google Scholar 

Brodehl J, Krause A, Hoyer PF (1988) Assessment of maximal tubular phosphate reabsorption: comparison of direct measurement with the nomogram of Bijvoet. Pediatr Nephrol 2:183–189. https://doi.org/10.1007/BF00862587

Article  CAS  PubMed  Google Scholar 

Del Pino M, Viterbo GL, Arenas MA, Perez Garrido N, Ramirez P, Marino R, Belgoroskly A, Fano V (2022) Growth in height and body proportion from birth to adulthood in hereditary hypophosphatemic rickets: a retrospective cohort study. J Endocrinol Invest 45:1349–1358. https://doi.org/10.1007/s40618-022-01768-9

Article  PubMed  Google Scholar 

Kruse K, Kracht U, Gopfert G (1982) Renal threshold phosphate concentration (TmPO4/GFR). Arch Dis Child 57:217–223. https://doi.org/10.1136/adc.57.3.217

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brodehl J, Gellissen K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17:163–171

CAS  PubMed  Google Scholar 

Lockitch G, Halstead AC, Albersheim S, MacCallum C, Quigley G (1988) Age- and sex-specific pediatric reference intervals for biochemistry analytes as measured with the Ektachem-700 analyzer. Clin Chem 34:1622–1625

Article  CAS  PubMed  Google Scholar 

Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto T, Yamauchi M, Michigami T, Matsumoto T (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients. Proposal of diagnostic criteria using FGF23 measurement. Bone 42:1235–1239. https://doi.org/10.1016/j.bone.2008.02.014

留言 (0)

沒有登入
gif