Pseudodesulfovibrio pelocollis sp. nov. a Sulfate-Reducing Bacterium Isolated from a Terrestrial Mud Volcano

Dimitrov LI (2002) Mud volcanoes–the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49–76

Article  CAS  Google Scholar 

Mazzini A, Etiope G (2017) Mud volcanism: an updated review. Earth Sci Rev 168:81–112

Article  CAS  Google Scholar 

Chang YH, Cheng TW, Lai WJ, Tsai W-Y, Sun C-H, Lin L-H, Wang P-L (2012) Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environ Microbiol 14:895–908. https://doi.org/10.1111/j.1462-2920.2011.02658.x

Article  CAS  PubMed  Google Scholar 

Green-Saxena A, Feyzullayev A, Hubert CR, Kallmeyer J, Krueger M, Sauer P, Schulz HM, Orphan VJ (2012) Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan. Environ Microbiol 14:3271–3286. https://doi.org/10.1111/1462-2920.12015

Article  CAS  PubMed  Google Scholar 

Lin YT, Tu TH, Wei CL, Rumble D, Lin LH, Wang PL (2018) Steep redox gradient and biogeochemical cycling driven by deeply sourced fluids and gases in a terrestrial mud volcano. FEMS Microb Ecol. https://doi.org/10.1093/femsec/fiy171

Article  Google Scholar 

Ren G, Ma A, Zhang Y, Deng Y et al (2018) Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes. Environ Microbiol 20:2370–2385. https://doi.org/10.1111/1462-2920.14128

Article  CAS  PubMed  Google Scholar 

Mardanov AV, Kadnikov VV, Beletsky AV, Ravin NV (2020) Sulfur and methane-oxidizing microbial community in a terrestrial mud volcano revealed by metagenomics. Microorganisms 8:1333. https://doi.org/10.3390/microorganisms8091333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavrushin VY, Kopf A, Dehle A, Stepanets MI (2003) Formation of mudvolcanic fluids in Taman (Russia) and Kakhetia (Georgia): evidence from boron isotopes. Lithol Miner Resour 38:120–153

Article  CAS  Google Scholar 

Kikvadze OE, Lavrushin VY, Pokrovskii BG, Polyak BG (2014) Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol Miner Resour 49:491–504. https://doi.org/10.1134/S0024490214060066

Article  CAS  Google Scholar 

Merkel AY, Chernyh NA, Pimenov NV, Bonch-Osmolovskaya EA, Slobodkin AI (2021) Diversity and metabolic potential of the terrestrial mud volcano microbial community with a high abundance of Archaea mediating the anaerobic oxidation of methane. Life 11:953. https://doi.org/10.3390/life11090953

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ratnikova NM, Slobodkin AI, Merkel AY, Kopitsyn DS, Kevbrin VV, Bonch-Osmolovskaya EA, Slobodkina GB (2020) Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. Int J Syst Evol Microbiol 70:487–492. https://doi.org/10.1099/ijsem.0.003779

Article  CAS  PubMed  Google Scholar 

Slobodkina GB, Merkel AY, Novikov AA, Bonch-Osmolovskaya EA, Slobodkin AI (2020) Pelomicrobium methylotrophicum gen. nov., sp. nov. a moderately thermophilic, facultatively anaerobic, lithoautotrophic and methylotrophic bacterium isolated from a terrestrial mud volcano. Extremophiles 24:177–185. https://doi.org/10.1007/s00792-019-01145-0

Article  CAS  PubMed  Google Scholar 

Slobodkina G, Ratnikova N, Merkel A, Kevbrin V, Kuchierskaya A, Slobodkin A (2022) Lithoautotrophic lifestyle of the widespread genus Roseovarius revealed by physiological and genomic characterization of Roseovarius autotrophicus sp. nov. FEMS Microbiol Ecol 98(10):fiac113. https://doi.org/10.1093/femsec/fiac113

Article  CAS  PubMed  Google Scholar 

Khomyakova MA, Merkel AY, Kopitsyn DS, Slobodkin AI (2022) Pelovirga terrestris gen. nov., sp. nov., anaerobic, alkaliphilic, fumarate-, arsenate-, Fe(III)- and sulfur-reducing bacterium isolated from a terrestrial mud volcano. Syst Appl Microbiol 45:126304. https://doi.org/10.1016/j.syapm.2022.126304

Article  CAS  PubMed  Google Scholar 

Khomyakova MA, Zavarzina DG, Merkel AY, Klyukina AA, Pikhtereva VA, Gavrilov SN, Slobodkin AI (2022) The first cultivated representatives of the actinobacterial lineage OPB41 isolated from subsurface environments constitute a novel order Anaerosomatales. Front Microbiol 13:1047580. https://doi.org/10.3389/fmicb.2022.1047580

Article  PubMed  PubMed Central  Google Scholar 

Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130

Article  CAS  PubMed  Google Scholar 

Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091. https://doi.org/10.1111/1462-2920.13283

Article  CAS  PubMed  Google Scholar 

Slobodkin AI, Ratnikova NM, Slobodkina GB, Klyukina AA, Chernyh NA, Merkel AY (2023) Composition and metabolic potential of Fe(III)-reducing enrichment cultures of methanotrophic ANME-2a Archaea and associated Bacteria. Microorganisms 11:555. https://doi.org/10.3390/microorganisms11030555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alain K, Holler T, Musat F, Elvert M, Treude T, Krüger M (2006) Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol 8:574–590. https://doi.org/10.1111/j.1462-2920.2005.00922.x

Article  CAS  PubMed  Google Scholar 

Kokoschka S, Dreier A, Romoth K, Taviani M, Schafer N, Reitner J, Hoppert M (2015) Isolation of anaerobic bacteria from terrestrial mud volcanoes (Salse di Nirano, Northern Apennines, Italy). Geomicrobiol J 32:355–364. https://doi.org/10.1080/01490451.2014.94063

Article  CAS  Google Scholar 

Frolova AA, Merkel AY, Kuchierskaya AA, Bonch-Osmolovskaya EA, Slobodkin AI (2021) Pseudodesulfovibrio alkaliphilus, sp. nov., an alkaliphilic sulfate-reducing bacterium isolated from a terrestrial mud volcano. Antonie Van Leeuwenhoek 114:1387–1397. https://doi.org/10.1007/s10482-021-01608-5

Article  CAS  PubMed  Google Scholar 

Khomyakova MA, Merkel AY, Segliuk VS, Slobodkin AI (2023) Desulfatitalea alkaliphila sp. nov., an alkalipilic sulfate- and arsenate- reducing bacterium isolated from a terrestrial mud volcano. Extremophiles 27:12. https://doi.org/10.1007/s00792-023-01297-0

Article  CAS  PubMed  Google Scholar 

Galushko A, Kuever J (2020) Desulfovibrionaceae. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA, Whitman WB (eds) Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, Hoboken. https://doi.org/10.1002/9781118960608.fbm00199.pub2

Chapter  Google Scholar 

Cao J, Gayet N, Zeng X, Shao Z, Jebbar M, Alain K (2016) Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 66:3904–3911

Article  CAS  PubMed  Google Scholar 

Ranchou-Peyruse M, Goni-Urriza M, Guignard M, Goas M, Ranchou-Peyruse A, Guyoneaud R (2018) Pseudodesulfovibrio hydrargyri sp. nov., a mercury-methylating bacterium isolated from a brackish sediment. Int J Syst Evol Microbiol 68:1461–1466

Article  CAS  PubMed  Google Scholar 

Galushko A, Kuever J (2019) Pseudodesulfovibrio. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA, Whitman WB (eds) Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, Hoboken. https://doi.org/10.1002/9781118960608.gbm01574

Chapter  Google Scholar 

Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB et al (2020) Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 70:5972–6016

Article  CAS  PubMed  Google Scholar 

Park MJ, Kim YJ, Park M, Yu J, Namirimu T, Roh YR, Kwon KK (2022) Establishment of genome based criteria for classification of the family Desulfovibrionaceae and proposal of two novel genera, Alkalidesulfovibrio gen. nov. and Salidesulfovibrio gen. nov. Front Microbiol 13:738205

Article  PubMed  PubMed Central  Google Scholar 

Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of Prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/ijsem.0.004332

Article  PubMed  PubMed Central  Google Scholar 

Zheng R, Wu S, Sun C (2021) Pseudodesulfovibrio cashew sp. nov., a novel deep-sea sulfate-reducing bacterium, linking heavy metal resistance and sulfur cycle. Microorganisms 9:429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slobodkin AI, Reysenbach AL, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA (2012) Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2565–2571. https://doi.org/10.1099/ijs.0.034397-0

Article  CAS  PubMed  Google Scholar 

Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

Article  CAS  PubMed  Google Scholar 

Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

Article  CAS 

留言 (0)

沒有登入
gif