Eukaryotic-driven directed evolution of Cas9 nucleases

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altae-Tran H, Kannan S, Demircioglu FE, Oshiro R, Nety SP, McKay LJ, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science. 2021;374:57–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karvelis T, Druteika G, Bigelyte G, Budre K, Zedaveinyte R, Silanskas A, et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 2021;599:692–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saito M, Xu P, Faure G, Maguire S, Kannan S, Altae-Tran H, et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature. 2023; Available from: https://doi.org/10.1038/s41586-023-06356-2

Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578:229–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155:733–40.

Article  CAS  PubMed  Google Scholar 

Ciciani M, Demozzi M, Pedrazzoli E, Visentin E, Pezzè L, Signorini LF, et al. Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data. Nat Commun. 2022;13:6474.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis JR, Wang X, Witte IP, Huang TP, Levy JM, Raguram A, et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat Biomed Eng. 2022;6:1272–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell. 2020;181:136–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasiunas G, Young JK, Karvelis T, Kazlauskas D, Urbaitis T, Jasnauskaite M, et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nat Commun. 2020;11:5512.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.

Article  CAS  PubMed  Google Scholar 

Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, Groover E, et al. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell. 2022;185:4574–86.e16.

Article  CAS  PubMed  Google Scholar 

Nakagawa R, Ishiguro S, Okazaki S, Mori H, Tanaka M, Aburatani H, et al. Engineered campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range. Commun Biol. 2022;5:211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Zuris JA, Viswanathan R, Edelstein JN, Turk R, Thommandru B, et al. Author correction: AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat Commun. 2021;12:4500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim DY, Lee JM, Moon SB, Chin HJ, Park S, Lim Y, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol. 2022;40:94–102.

Article  CAS  PubMed  Google Scholar 

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using staphylococcus aureus Cas9. Nature. 2015;520:186–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36:265–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim E, Koo T, Park SW, Kim D, Kim K, Cho H-Y, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. 2017;8:14500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li F, Wing K, Wang J-H, Luu CD, Bender JA, Chen J, et al. Comparison of CRISPR/Cas endonucleases for in vivo retinal gene editing. Front Cell Neurosci. 2020;14:570917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

Schmid-Burgk JL, Gao L, Li D, Gardner Z, Strecker J, Lash B, et al. Highly parallel profiling of Cas9 variant specificity. Mol Cell. 2020;78:794–800.e8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368:290–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187–97.

Article  CAS  PubMed  Google Scholar 

Daer RM, Cutts JP, Brafman DA, Haynes KA. The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synth Biol. 2017;6:428–38.

Article  CAS  PubMed  Google Scholar 

Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 2014;32:670–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Rinsma M, Janssen JM, Liu J, Maggio I, Gonçalves MAFV. Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Res. 2016;44:6482–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yarrington RM, Verma S, Schwartz S, Trautman JK, Carroll D. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proc Natl Acad Sci U S A. 2018;115:9351–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife. 2016;5:e13450. https://doi.org/10.7554/eLife.13450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife. 2016;5:e12677. https://doi.org/10.7554/eLife.12677.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strohkendl I, Saifuddin FA, Gibson BA, Rosen MK, Russell R, Finkelstein IJ. Inhibition of CRISPR-Cas12a DNA targeting by nucleosomes and chromatin. Sci Adv. 2021;7:eabd6030. https://doi.org/10.1126/sciadv.abd6030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding X, Seebeck T, Feng Y, Jiang Y, Davis GD, Chen F. Improving CRISPR-Cas9 genome editing efficiency by fusion with chromatin-modulating peptides. CRISPR J. 2019;2:51–63.

Article  CAS  PubMed  Google Scholar 

Dong L, Guan X, Li N, Zhang F, Zhu Y, Ren K, et al. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat Struct Mol Biol. 2019;26:308–14.

Article  CAS  PubMed  Google Scholar 

Niu Y, Yang L, Gao T, Dong C, Zhang B, Yin P, et al. A Type I-F Anti-CRISPR protein inhibits the CRISPR-Cas surveillance complex by ADP-ribosylation. Mol Cell. 2020;80:512–24.e5.

留言 (0)

沒有登入
gif