Highly specific and sensitive chromo-fluorogenic detection of sarin, tabun, and mustard gas stimulants: a multianalyte recognition approach

Cordell, R. L., Willis, K. A., Wyche, K. P., et al. (2007). Detection of chemical weapon agents and simulants using chemical ionization reaction time-of-flight mass spectrometry. Analytical Chemistry, 79, 8359–8366. https://doi.org/10.1021/AC071193C/ASSET/IMAGES/LARGE/AC071193CF00008.JPEG

Article  CAS  PubMed  Google Scholar 

Chauhan, S., Chauhan, S., D’Cruz, R., et al. (2008). Chemical warfare agents. Environmental Toxicology and Pharmacology, 26, 113–122. https://doi.org/10.1016/J.ETAP.2008.03.003

Article  CAS  PubMed  Google Scholar 

Okumura, T., Takasu, N., Ishimatsu, S., et al. (1996). Report on 640 victims of the Tokyo Subway Sarin Attack. Annals of Emergency Medicine, 28, 129–135. https://doi.org/10.1016/S0196-0644(96)70052-5

Article  CAS  PubMed  Google Scholar 

Wiener, S. W., & Hoffman, R. S. (2004). Nerve agents: A comprehensive review. Journal of Intensive Care Medicine, 19, 22–37. https://doi.org/10.1177/0885066603258659

Article  PubMed  Google Scholar 

Abou-Donia, M. B., Siracuse, B., Gupta, N., & Sobel Sokol, A. (2016). Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: Critical review. Critical Reviews in Toxicology, 46, 845–875. https://doi.org/10.1080/10408444.2016.1220916

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis, E. D., Gordon, W. O., Wilmsmeyer, A. R., et al. (2014). Chemical warfare agent surface adsorption: Hydrogen bonding of sarin and soman to amorphous silica. Journal of Physical Chemistry Letters, 5, 1393–1399. https://doi.org/10.1021/JZ500375H/ASSET/IMAGES/LARGE/JZ-2014-00375H_0008.JPEG

Article  CAS  PubMed  Google Scholar 

Costanzi, S., Machado, J. H., & Mitchell, M. (2018). Nerve agents: What they are, how they work, how to counter them. ACS Chemical Neuroscience, 9, 873–885. https://doi.org/10.1021/ACSCHEMNEURO.8B00148/ASSET/IMAGES/MEDIUM/CN-2018-00148D_0012.GIF

Article  CAS  PubMed  Google Scholar 

Park, Y. H., Song, H. K., Lee, C. S., & Jee, J. G. (2008). Fabrication and its characteristics of metal-loaded TiO2/SnO2 thick-film gas sensor for detecting dichloromethane. Journal of Industrial and Engineering Chemistry, 14, 818–823. https://doi.org/10.1016/J.JIEC.2008.06.009

Article  CAS  Google Scholar 

Patil, L. A., Deo, V. V., Shinde, M. D., et al. (2014). Improved 2-CEES sensing performance of spray pyrolized Ru-CdSnO3 nanostructured thin films. Sensors Actuators B Chem, 191, 130–136. https://doi.org/10.1016/J.SNB.2013.09.091

Article  CAS  Google Scholar 

Jung, Y., & Kim, D. (2019). A selective fluorescence turn-on probe for the detection of DCNP (Nerve Agent Tabun Simulant). Materials, 12, 2943. https://doi.org/10.3390/MA12182943

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar, H. S., Ghosh, A., Das, S., et al. (2018). (2018) Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor. Sci Reports, 81(8), 1–7. https://doi.org/10.1038/s41598-018-21780-5

Article  CAS  Google Scholar 

Diauudin, F. N., Rashid, J. I. A., Knight, V. F., et al. (2019). A review of current advances in the detection of organophosphorus chemical warfare agents based biosensor approaches. Sens Bio-Sensing Res, 26, 100305. https://doi.org/10.1016/J.SBSR.2019.100305

Article  Google Scholar 

Kim, K., Tsay, O. G., Atwood, D. A., & Churchill, D. G. (2011). Destruction and detection of chemical warfare agents. Chemical Reviews, 111, 5345–5403. https://doi.org/10.1021/CR100193Y

Article  CAS  PubMed  Google Scholar 

Jang, Y. J., Kim, K., Tsay, O. G., et al. (2015). Update 1 of: destruction and detection of chemical warfare agents. Chemical Reviews, 115, PR1–PR76. https://doi.org/10.1021/ACS.CHEMREV.5B00402

Article  CAS  PubMed  Google Scholar 

Tohora, N., Ahamed, S., Sultana, T., et al. (2024). Fabrication of a re-useable ionic liquid-based colorimetric organo nanosensor for detection of nerve agents’ stimulants. Talanta, 266, 124968. https://doi.org/10.1016/J.TALANTA.2023.124968

Article  CAS  PubMed  Google Scholar 

Tohora, N., Ahamed, S., Mahato, M., et al. (2023). Ionic liquids-based organo nano-fluorosensor for fast and selective detection of sarin gas surrogate, diethylchlorophosphate. Journal of Molecular Liquids, 387, 122698. https://doi.org/10.1016/J.MOLLIQ.2023.122698

Article  CAS  Google Scholar 

Tohora, N., Mahato, M., Sultana, T., et al. (2023). A benzoxazole-based turn-on fluorosensor for rapid and sensitive detection of sarin surrogate, diethylchlorophosphate. Analytica Chimica Acta, 1255, 341111. https://doi.org/10.1016/J.ACA.2023.341111

Article  CAS  PubMed  Google Scholar 

Tohora, N., Mahato, M., Sahoo, R., et al. (2023). Fabrication of a GUMBOS-based ratiometric organo nanosensor for selective and sensitive detection of perchlorate ions that works in 100% water. Journal of Photochemistry and Photobiology, A: Chemistry, 445, 115050. https://doi.org/10.1016/J.JPHOTOCHEM.2023.115050

Article  CAS  Google Scholar 

Tohora, N., Mahato, M., Sultana, T., et al. (2023). A benzoxazole-based fluorescent ‘off-on-off’ probe for cascade recognition of cyanide and Fe3+ ions. Journal of Photochemistry and Photobiology, A: Chemistry, 442, 114807. https://doi.org/10.1016/J.JPHOTOCHEM.2023.114807

Article  CAS  Google Scholar 

Tohora, N., Sultana, T., Mahato, M., et al. (2023). An off-on-off benzoxazole-based fluorosensor for relay detection of Al3+ ions and explosive nitroaromatic compounds. ChemistrySelect, 8, e202301023. https://doi.org/10.1002/SLCT.202301023

Article  CAS  Google Scholar 

Behera, K. C., & Bag, B. (2020). Selective DCP detection with xanthene derivatives by carbonyl phosphorylation. Chemical Communications, 56, 9308–9311. https://doi.org/10.1039/D0CC03985C

Article  CAS  PubMed  Google Scholar 

Qi, X. N., Xie, Y. Q., Zhang, Y. M., et al. (2021). Acid-base regulation the reversible transformation of novel phenazine derivatives and serving as biomarker for tracing acidity change in living cell and mice. Sensors Actuators B Chem, 344, 130287. https://doi.org/10.1016/J.SNB.2021.130287

Article  CAS  Google Scholar 

Zhang, Z., Kang, M., Tan, H., et al. (2022). The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chemical Society Reviews, 51, 1983–2030. https://doi.org/10.1039/D1CS01138C

Article  CAS  PubMed  Google Scholar 

Hr, P. (1996). Handbook of fluorescent probes and research chemicals. Molecular Probes, Eugene, 8, 21–26. https://doi.org/10.5983/NL2001JSCE.23.87_21

Article  Google Scholar 

Clark, M. A., Duffy, K., Tibrewala, J., & Lippard, S. J. (2003). Synthesis and metal-binding properties of chelating fluorescein derivatives. Organic Letters, 5, 2051–2054. https://doi.org/10.1021/OL0344570/SUPPL_FILE/OL0344570SI20030419_124218.PDF

Article  CAS  PubMed  Google Scholar 

Burdette, S. C., & Lippard, S. J. (2002). The rhodafluor family. An initial study of potential ratiometric fluorescent sensors for Zn2+. Inorganic Chemistry, 41, 6816–6823. https://doi.org/10.1021/IC026048Q/ASSET/IMAGES/LARGE/IC026048QF00004.JPEG

Article  CAS  PubMed  Google Scholar 

Xiang, Y., Tong, A., Jin, P., & Ju, Y. (2006). New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Organic Letters, 8, 2863–2866. https://doi.org/10.1021/OL0610340/SUPPL_FILE/OL0610340SI20060523_111246.PDF

Article  CAS  PubMed  Google Scholar 

Kwon, J. Y., Jang, Y. J., Lee, Y. J., et al. (2005). A highly selective fluorescent chemosensor for Pb2+. Journal of the American Chemical Society, 127, 10107–10111. https://doi.org/10.1021/JA051075B/SUPPL_FILE/JA051075BSI20050518_032846.PDF

Article  CAS  PubMed  Google Scholar 

Xiang, Y., & Tong, A. (2006). A new rhodamine-based chemosensor exhibiting selective Fe III-amplified fluorescence. Organic Letters, 8, 1549–1552. https://doi.org/10.1021/OL060001H/SUPPL_FILE/OL060001HSI20060303_053256.PDF

Article  CAS  PubMed  Google Scholar 

Wu, X., Wu, Z., & Han, S. (2011). Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor. Chemical Communications, 47, 11468–11470. https://doi.org/10.1039/C1CC15250E

Article  CAS  PubMed  Google Scholar 

Dujols, V., Ford, F., & Czarnik, A. W. (1997). A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. Journal of the American Chemical Society, 119, 7386–7387. https://doi.org/10.1021/JA971221G/SUPPL_FILE/JA7386.PDF

Article  CAS  Google Scholar 

Chen, L., Wu, D., & Yoon, J. (2018). Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sensors, 3, 27–43. https://doi.org/10.1021/ACSSENSORS.7B00816/ASSET/IMAGES/LARGE/SE-2017-00816P_0051.JPEG

Article  CAS  PubMed  Google Scholar 

Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for mediation of chemical and biological warfare agents. Annual Review of Biomedical Engineering, 5, 1–27. https://doi.org/10.1146/ANNUREV.BIOENG.5.121202.125602

Article  CAS  PubMed 

留言 (0)

沒有登入
gif