Inhibitory effects of senkyuchachosan on SARS-CoV-2 papain-like protease activity in vitro

Kumar A, Singh R, Kaur J, et al Wuhan to World: The COVID-19 Pandemic. https://doi.org/10.3389/fcimb.2021.596201

Coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 27 Jul 2023

Sarangi MK, Padhi S, Dheeman S et al (2022) Diagnosis, prevention, and treatment of coronavirus disease: a review. Expert Rev Anti Infect Ther 20:243–266. https://doi.org/10.1080/14787210.2021.1944103

Article  CAS  PubMed  Google Scholar 

Gordon DE, Jang GM, Bouhaddou M et al (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583:459–468. https://doi.org/10.1038/S41586-020-2286-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freitas BT, Durie IA, Murray J et al (2020) Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis 6:2099–2109. https://doi.org/10.1021/ACSINFECDIS.0C00168

Article  CAS  PubMed  Google Scholar 

Wu C, Liu Y, Yang Y et al (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10:766–788. https://doi.org/10.1016/J.APSB.2020.02.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lobo-Galo N, Terrazas-López M, Martínez-Martínez A, Díaz-Sánchez ÁG (2021) FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. J Biomol Struct Dyn 39:3419–3427. https://doi.org/10.1080/07391102.2020.1764393

Article  CAS  PubMed  Google Scholar 

Zhang L, Lin D, Sun X et al (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368:409–412. https://doi.org/10.1126/SCIENCE.ABB3405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin MH, Moses DC, Hsieh CH et al (2018) Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antivir Res 150:155–163. https://doi.org/10.1016/J.ANTIVIRAL.2017.12.015

Article  CAS  PubMed  Google Scholar 

Arya R, Prashar V, Kumar M (2022) Evaluating stability and activity of SARS-CoV-2 PLpro for high-throughput screening of inhibitors. Mol Biotechnol. https://doi.org/10.1007/S12033-021-00383-Y

Article  PubMed  Google Scholar 

Diamond MS, Kanneganti TD (2022) Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 23:165–176. https://doi.org/10.1038/S41590-021-01091-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JS, Shin EC (2020) The type I interferon response in COVID-19: implications for treatment. Nat Rev Immunol 20:585–586. https://doi.org/10.1038/S41577-020-00429-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

McClain CB, Vabret N (2020) SARS-CoV-2: the many pros of targeting PLpro. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-020-00335-Z

Article  PubMed  PubMed Central  Google Scholar 

Ratia K, Kilianski A, Baez-Santos YM et al (2014) Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog. https://doi.org/10.1371/JOURNAL.PPAT.1004113

Article  PubMed  PubMed Central  Google Scholar 

Jeon YJ, Yoo HM, Chung CH (2010) ISG15 and immune diseases. Biochim Biophys Acta 1802:485–496. https://doi.org/10.1016/J.BBADIS.2010.02.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klemm T, Ebert G, Calleja DJ et al (2020) Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. https://doi.org/10.15252/EMBJ.2020106275

Article  PubMed  PubMed Central  Google Scholar 

Kawall A, Lewis DSM, Sharma A et al (2023) Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity. Front Chem. https://doi.org/10.3389/FCHEM.2022.1100460

Article  PubMed  PubMed Central  Google Scholar 

Shin D, Mukherjee R, Grewe D et al (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587:657–662. https://doi.org/10.1038/S41586-020-2601-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuchta K, Cameron S, Lee M et al (2022) Which East Asian herbal medicines can decrease viral infections? Phytochem Rev 21:219–237. https://doi.org/10.1007/S11101-021-09756-2

Article  CAS  PubMed  Google Scholar 

Yoshino T, Arita R, Horiba Y, Watanabe K (2019) The use of maoto (Ma-Huang-Tang), a traditional Japanese Kampo medicine, to alleviate flu symptoms: a systematic review and meta-analysis. BMC Complement Altern Med. https://doi.org/10.1186/S12906-019-2474-Z

Article  PubMed  PubMed Central  Google Scholar 

Ogawa-Ochiai K, Ishikawa H, Nishimura H et al (2022) Clinical and epidemiological features of healthcare workers after a coronavirus disease 2019 cluster infection in Japan and the effects of Kampo formulas-Hochuekkito and Kakkonto: a retrospective cohort study. Medicine 101:E29748. https://doi.org/10.1097/MD.0000000000029748

Article  CAS  PubMed  Google Scholar 

Masui S, Nabeshima S, Ajisaka K et al (2017) Maoto, a Traditional japanese herbal medicine, inhibits uncoating of influenza virus. Evid Based Complement Alternat Med. https://doi.org/10.1155/2017/1062065

Article  PubMed  PubMed Central  Google Scholar 

Kakimoto M, Nomura T, Nazmul T et al (2022) In vitro suppression of SARS-CoV-2 infection by existing kampo formulas and crude constituent drugs used for treatment of common cold respiratory symptoms. Front Pharmacol. https://doi.org/10.3389/FPHAR.2022.804103

Article  PubMed  PubMed Central  Google Scholar 

Ishida K, Sato H (2006) Kampo medicines as alternatives for treatment of migraine: six case studies. Complement Ther Clin Pract 12:276–280. https://doi.org/10.1016/J.CTCP.2006.07.002

Article  PubMed  Google Scholar 

Nishimura H, Okamoto M, Dapat I et al (2021) Inactivation of SARS-CoV-2 by catechins from green tea. Jpn J Infect Dis 74:421–423. https://doi.org/10.7883/YOKEN.JJID.2020.902

Article  CAS  PubMed  Google Scholar 

Upadhyay S, Tripathi PK, Singh M et al (2020) Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother Res 34:3411–3419. https://doi.org/10.1002/PTR.6802

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang M, Park YI, Cha YE et al (2020) Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med. https://doi.org/10.1155/2020/5630838

Article  PubMed  PubMed Central  Google Scholar 

Liu SY, Wang W, Ke JP et al (2022) Discovery of Camellia sinensis catechins as SARS-CoV-2 3CL protease inhibitors through molecular docking, intra and extra cellular assays. Phytomedicine. https://doi.org/10.1016/J.PHYMED.2021.153853

Article  PubMed  PubMed Central  Google Scholar 

Gogoi B, Chowdhury P, Goswami N et al (2021) Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol Divers 25:1963–1977. https://doi.org/10.1007/S11030-021-10211-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latos-Brozio M, Masek A (2020) Natural polymeric compound based on high thermal stability catechin from green tea. Biomolecules 10:1191. https://doi.org/10.3390/BIOM10081191

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai KC, Huang YC, Liaw CC et al (2021) A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: a bedside-to-bench study. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2020.111037

Article  PubMed  PubMed Central  Google Scholar 

Yamauchi Y, Nakamura A, Kitai M et al (2007) Improved sample pre-treatment for determination of caffeine in tea using a cartridge filled with polyvinylpolypyrroridone (PVPP). Chem Pharm Bull (Tokyo) 55:1393–1396. https://doi.org/10.1248/CPB.55.1393

Article  CAS  PubMed  Google Scholar 

Mitchell AE, Hong YJ, May JC et al (2005) A Comparison of polyvinylpolypyrrolidone (PVPP), silica xerogel and a polyvinylpyrrolidone (PVP)–silica co-product for their ability to remove polyphenols from beer. J Inst Brew 111:20–25. https://doi.org/10.1002/J.2050-0416.2005.TB00644.X

Article  CAS  Google Scholar 

Goto I, Saga S, Ichitani M et al (2023) Investigation of components in roasted green tea that inhibit Streptococcus mutans biofilm formation. Foods 12:2502. https://doi.org/10.3390/FOODS12132502

Article  CAS  PubMed 

留言 (0)

沒有登入
gif