Comparison of neuromuscular fatigability amplitude and etiologies between fatigued and non-fatigued cancer patients

Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93(4):1318–1326. https://doi.org/10.1152/japplphysiol.00283.2002

Article  PubMed  Google Scholar 

Abdalla LHP, Denadai BS, Bassan NM, Greco CC (2018) Exercise tolerance during muscle contractions below and above the critical torque in different muscle groups. Appl Physiol Nutr Metab 43(2):174–179. https://doi.org/10.1139/apnm-2017-0381

Article  PubMed  Google Scholar 

Berger AM, Mooney K, Alvarez-Perez A, Breitbart WS, Carpenter KM, Cella D, National comprehensive cancer network (2015) Cancer-related fatigue, version 2.2015. J Natl Compr Cancer Netw 13(8):1012–1039. https://doi.org/10.6004/jnccn.2015.0122

Article  Google Scholar 

Boccia G, Dardanello D, Brustio PR, Tarperi C, Festa L, Zoppirolli C, Rainoldi A (2018) Neuromuscular fatigue does not impair the rate of force development in ballistic contractions of submaximal amplitudes. Front Physiol 9:1503. https://doi.org/10.3389/fphys.2018.01503

Article  PubMed  PubMed Central  Google Scholar 

Bower JE (2014) Cancer-related fatigue–mechanisms, risk factors, and treatments. Nat Rev Clin Oncol 11(10):597–609. https://doi.org/10.1038/nrclinonc.2014.127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bower JE, Ganz PA, Irwin MR, Cole SW, Garet D, Petersen L, Crespi CM (2021) Do all patients with cancer experience fatigue? A longitudinal study of fatigue trajectories in women with breast cancer. Cancer. https://doi.org/10.1002/cncr.33327

Article  PubMed  Google Scholar 

Brownstein CG, Twomey R, Temesi J, Wrightson JG, Martin T, Medysky ME, Millet GY (2021) Physiological and psychosocial correlates of cancer-related fatigue. J Cancer Surviv. https://doi.org/10.1007/s11764-021-01115-6

Article  PubMed  Google Scholar 

Brownstein CG, Twomey R, Temesi J, Medysky ME, Culos-Reed SN, Millet GY (2022) Mechanisms of neuromuscular fatigability in people with cancer-related fatigue. Med Sci Sports Exerc 54(8):1355–1363. https://doi.org/10.1249/MSS.0000000000002919

Article  CAS  PubMed  Google Scholar 

Burnley M (2009) Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans. J Appl Physiol 106(3):975–983. https://doi.org/10.1152/japplphysiol.91474.2008

Article  PubMed  Google Scholar 

Cai B, Allexandre D, Rajagopalan V, Jiang Z, Siemionow V, Ranganathan VK, Yue GH (2014) Evidence of significant central fatigue in patients with cancer-related fatigue during repetitive elbow flexions till perceived exhaustion. PLoS ONE 9(12):e115370. https://doi.org/10.1371/journal.pone.0115370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, Schmitz KH (2019) Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc 51(11):2375–2390. https://doi.org/10.1249/MSS.0000000000002116

Article  PubMed  PubMed Central  Google Scholar 

Chartogne M, Rahmani A, Nicolon L, Jubeau M, Morel B (2020) Neuromuscular fatigability amplitude and aetiology are interrelated across muscles. Exp Physiol 105(10):1758–1766. https://doi.org/10.1113/EP088682

Article  PubMed  Google Scholar 

Chartogne M, Leclercq A, Beaune B, Boyas S, Forestier C, Martin T, Morel B (2021a) Building a biopsychosocial model of cancer-related fatigue: the BIOCARE FActory cohort study protocol. BMC Cancer 21(1):1140. https://doi.org/10.1186/s12885-021-08831-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chartogne M, Rahmani A, Landry S, Bourgeois H, Peyrot N, Morel B (2021b) Neuromuscular, psychological, and sleep predictors of cancer-related fatigue in cancer patients. Clin Breast Cancer 21(5):425–432. https://doi.org/10.1016/j.clbc.2020.12.002

Article  PubMed  Google Scholar 

D’Emanuele S, Maffiuletti NA, Tarperi C, Rainoldi A, Schena F, Boccia G (2021) Rate of force development as an indicator of neuromuscular fatigue: a scoping review. Front Hum Neurosci 15:701916. https://doi.org/10.3389/fnhum.2021.701916

Article  PubMed  PubMed Central  Google Scholar 

de Lima FD, Battaglini CL, Chaves SN, Ugliara L, Sarandy J, Lima RM, Bottaro M (2020) Effect of strength training and antioxidant supplementation on perceived and performance fatigability of breast cancer survivors - a randomized, double-blinded, placebo-controlled study. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2020-0166

Article  PubMed  Google Scholar 

Donovan KA, Jacobsen PB (2007) Fatigue, depression, and insomnia: evidence for a symptom cluster in cancer. Semin Oncol Nurs 23(2):127–135. https://doi.org/10.1016/j.soncn.2007.01.004

Article  PubMed  Google Scholar 

Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72(5):1631–1648. https://doi.org/10.1152/jappl.1992.72.5.1631

Article  CAS  PubMed  Google Scholar 

Evans JD (1996) Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Pub. Co, Pacific Grove

Google Scholar 

Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Article  CAS  PubMed  Google Scholar 

Giesinger JM, Kuijpers W, Young T, Tomaszewski KA, Friend E, Zabernigg A, Aaronson NK (2016) Thresholds for clinical importance for four key domains of the EORTC QLQ-C30: physical functioning, emotional functioning, fatigue and pain. Health Qual Life Outcomes 14:87. https://doi.org/10.1186/s12955-016-0489-4

Article  PubMed  PubMed Central  Google Scholar 

Grisold W, Grisold A, Löscher WN (2016) Neuromuscular complications in cancer. J Neurol Sci 367:184–202. https://doi.org/10.1016/j.jns.2016.06.002

Article  CAS  PubMed  Google Scholar 

Hendrix CR, Housh TJ, Mielke M, Zuniga JM, Camic CL, Johnson GO, Schmidt RJ (2009) Critical torque, estimated time to exhaustion, and anaerobic work capacity from linear and nonlinear mathematical models. Med Sci Sports Exerc 41(12):2185–2190. https://doi.org/10.1249/MSS.0b013e3181ab8cc0

Article  PubMed  Google Scholar 

Hucteau E, Mallard J, Pivot X, Schott R, Pflumio C, Trensz P, Hureau TJ (2023) Exacerbated central fatigue and reduced exercise capacity in early-stage breast cancer patients treated with chemotherapy. Eur J Appl Physiol 123(7):1567–1581. https://doi.org/10.1007/s00421-023-05177-5

Article  PubMed  PubMed Central  Google Scholar 

Hureau TJ, Romer LM, Amann M (2016) The “sensory tolerance limit”: a hypothetical construct determining exercise performance? Eur J Sport Sci 18(1):13–24. https://doi.org/10.1080/17461391.2016.1252428

Article  PubMed  PubMed Central  Google Scholar 

Izquierdo M, Aguado X, Gonzalez R, López JL, Häkkinen K (1999) Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol 79(3):260–267. https://doi.org/10.1007/s004210050504

Article  CAS  Google Scholar 

Kent-Braun JA (1997) Noninvasive measures of central and peripheral activation in human muscle fatigue. Muscle Nerve Suppl 5:S98-101

Article  CAS  PubMed  Google Scholar 

Kisiel-Sajewicz K, Davis MP, Siemionow V, Seyidova-Khoshknabi D, Wyant A, Walsh D, Yue GH (2012) Lack of muscle contractile property changes at the time of perceived physical exhaustion suggests central mechanisms contributing to early motor task failure in patients with cancer-related fatigue. J Pain Symptom Manag 44(3):351–361. https://doi.org/10.1016/j.jpainsymman.2011.08.007

Article  Google Scholar 

Kluger BM, Krupp LB, Enoka RM (2013) Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80(4):409–416. https://doi.org/10.1212/WNL.0b013e31827f07be

Article  PubMed  PubMed Central  Google Scholar 

Krüger RL, Aboodarda SJ, Samozino P, Rice CL, Millet GY (2018) Isometric versus dynamic measurements of fatigue: does age matter? A meta-analysis. Med Sci Sports Exerc 50(10):2132–2144. https://doi.org/10.1249/MSS.0000000000001666

Article  PubMed  Google Scholar 

MacIntosh BR, Rassier DE (2002) What is fatigue? Can J Appl Physiol 27(1):42–55

Article  CAS  PubMed  Google Scholar 

Maffiuletti NA, Bizzini M, Widler K, Munzinger U (2010) Asymmetry in quadriceps rate of force development as a functional outcome measure in TKA. Clin Orthop Relat Res 468(1):191–198. https://doi.org/10.1007/s11999-009-0978-4

Article  PubMed  Google Scholar 

Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116(6):1091–1116. https://doi.org/10.1007/s00421-016-3346-6

Article  PubMed  PubMed Central  Google Scholar 

Millet GY, Martin V, Martin A, Vergès S (2011) Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111(10):2489–2500. https://doi.org/10.1007/s00421-011-1996-y

Article  PubMed  Google Scholar 

Millet GY, Bertrand MF, Lapole T, Féasson L (2023) Measuring objective fatigability and autonomic dysfunction in clinical populations: how and why? Front Sports Act Living. https://doi.org/10.3389/fspor.2023.1140833

Article  PubMed 

留言 (0)

沒有登入
gif