Hydrogen Production from Natural Gas in Laser Plasma: Chemistry, International Energy Policy, and Economic Model

Global Hydrogen Review, Paris: IEA, 2022.

Wappler, M., Unguder, D., Lu, X., Ohlmeyer, H., Teschke, H., and Lueke, W., Int. J. Hydrogen Energy, 2022, vol. 47, no. 79, p. 33551. https://doi.org/10.1016/j.ijhydene.2022.07.253

Article  CAS  Google Scholar 

Green Hydrogen in China: A Roadmap for Progress, in White Paper, Cologny/Geneva: World Economic Forum, 2023, p. 51.

Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 9 iyunya 2020 g. № 1523-r (Ob Energeticheskoi strategii Rossiiskoi Federatsii na period do 2035 g.) (Order of the Government of the Russian Federation of June 9, 2020 no. 1523-r (On the Energy Strategy of the Russian Federation for the Period Until 2035)), 2020.

Rasporyazhenie Pravitel’stva RF ot 5 avgusta 2021 g. № 2162-r (Ob utverzhdenii Kontseptsii razvitiya vodorodnoi energetiki v RF) (Order of the Government of the Russian Federation of August 5, 2021 no. 2162-r (On Approval of the Concept for the Development of Hydrogen Energy in the Russian Federation)), 2021.

Opportunities for Hydrogen Production with CCUS in China, Paris: IEA. 2022. https://www.iea.org/reports/opportunities-for-hydrogen-production-with-ccus-in-china

Meld, S., Energy for Work – Long-Term Value Creation from Norwegian Energy Resources, Oslo: Ministry of Oil and Energy, Ministry of Climate and the Environment, 2021.

The Government’s Hydrogen Strategy – on the Way to a Low-Luminescence Society, Oslo: Ministry of Oil and Energy, 2019.

Glaz’ev, S.Yu., Za gorizontom kontsa istorii (Beyond the Horizon of the End of History), Moscow: Propsekt, 2021.

Fan, Z., Sheerazi, H., Bhardwaj, A., Corbeau, A.-S., Longobardi, K., Castañeda, A., Merz, A.-K., Woodall, C.M., Agrawal, M., Orozco-Sanchez, S., and Friedmann, J., Hydrogen Leakage: A Potential Risk for the Hydrogen Economy, New York: Columbia Univ, 2022. https://www.energypolicy.columbia.edu/wp-content/uploads/2022/07/HydrogenLeakageRegulations_CGEP_Commentary_063022.pdf

Sánchez-Bastardo, N., Schlögl, R., and Ruland, H., Ind. Eng. Chem. Res., 2021, vol. 60, no. 32, p. 11855. https://doi.org/10.1021/acs.iecr.1c01679

Article  CAS  Google Scholar 

Production of Hydrogen from Renewable Resources, Fang, Z., Smith, R. L., and Qi, X, Eds., Dordrecht: Springer Netherlands, 2015, vol. 5.

Parfenova, V. E., Nikitchenko, N.V., Pimenova, A.A., Kuz’min, A.E., Kulikova, M.V., Chupichev, O.B., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, no. 5, p. 625. https://doi.org/10.1134/S1070427220050018

Article  Google Scholar 

Scapinello, M., Delikonstantis, E., and Stefanidis, G.D., Chem. Eng. Process. Process Intensif., 2017, vol. 117, p. 120. https://doi.org/10.1016/j.cep.2017.03.024

Article  CAS  Google Scholar 

Feng, J., Sun, X., Li, Zh., Hao, X., Fan, M., Ning, P., and Li, K., Adv. Sci., 2022, vol. 9, no. 34, 2203221. https://doi.org/10.1002/advs.202203221

Chen, G., Tu, X., Homm, G., and Weidenkaff, A., Nat. Rev. Mater., 2022, vol. 7, no. 5, p. 333. https://doi.org/10.1038/s41578-022-00439-8

Article  Google Scholar 

Wnukowski, M., Energies, 2023, vol. 16, no. 18, p. 6441. https://doi.org/10.3390/en16186441

Article  CAS  Google Scholar 

Lee, D. H., Kang, H., Kim, Y., Song, H., Lee, H., Choi, J., Kim, K.-T., and Songet, Y.-H., Fuel Process. Technol., 2023, vol. 247, p. 107761. https://doi.org/10.1016/j.fuproc.2023.107761

Article  CAS  Google Scholar 

Kuznetsov, D.L., Uvarin, V.V., and Filatov, I.E., J. Phys. D. Appl. Phys., 2021, vol. 54, no. 43, p. 435203. https://doi.org/10.1088/1361-6463/ac17b2

Article  CAS  Google Scholar 

Bi, S., Yuan, C., Liu, C., Cheng, J., Wang, W., and Cai, Y., Appl. Sci., 2021, vol. 11, no. 9, p. 3938. https://doi.org/10.3390/app11093938

Article  CAS  Google Scholar 

Thomas, J., Maia, L., Ledemi, Y., Messaddeq, Y., and Kashyap, R., Oxide Electronics, Ray, K., Ed., New York: Wiley, 2021, p. 353.

Spreafico, C., Russo, D., and Degl, R., J. Intell. Manuf., 2022, vol. 33, no. 2, p. 353. https://doi.org/10.1007/s10845-021-01809-9

Article  Google Scholar 

Baymler, I.V., Barmina, E.V., Simakin, A.V., and Shafeev, G.A., Quant. Electron., 2018, vol. 48, no. 8, p. 738. https://doi.org/10.1070/QEL16648

Article  CAS  Google Scholar 

Stadnichenko, O.A., Snytnikov, V. N., Snytnikov, V.N., and Masyuk, N.S., Chem. Eng. Res. Des., 2016, vol. 109, p. 405. https://doi.org/10.1016/j.cherd.2016.02.008

Article  CAS  Google Scholar 

Rezaei, F., Gorbanev, Yu., Chys, M., Nikiforov, A., Van Hulle, S.W.H., Cos, P., Bogaerts, A., and De Geyter, N., Plasma Process. Polym., 2018, vol. 15, no. 6. https://doi.org/10.1002/ppap.201700226

Hamann, S., Rond, C., Pipa, A.V., Wartel, M., Lombardi, G., Gicquel, A., and Röpckeet, J., Plasma Sources Sci. Technol., 2014, vol. 23, no. 4, p. 045015. https://doi.org/10.1088/0963-0252/23/4/045015

Article  CAS  Google Scholar 

Abdelli-Messaci, S., Kerdja, T., Bendib, A., and Malek, S., Spectrochim. Acta B, 2005, vol. 60, nos. 7–8, p. 955. https://doi.org/10.1016/j.sab.2005.07.002

Article  CAS  Google Scholar 

Morgan, N.N. and ElSabbagh, M., Plasma Chem. Plasma Process, 2017, vol. 37, no. 5, p. 1375 https://doi.org/10.1007/s11090-017-9829-3

Article  CAS  Google Scholar 

Díez, N., Śliwak, A., Gryglewicz, S., Grzyb, B., and Gryglewicz, G., RSC Adv., 2015, vol. 5, no. 100, p. 81831. https://doi.org/10.1039/C5RA14461B

Tarasevich, B.N., IK spektry osnovnykh klassov organicheskikh soedinenii. Spravochnik (IR Spectra of the Main Classes of Organic Compounds. Reference), Moscow: Mosk. Gos. Univ., 2012.

Purevsuren, P., Batbileg, S., Kuznetsova, L.I., Batkhishig, D., Namkhaynorov, M., Battsetseg, M., Narangirel, G., and Kuznetsov, P.N., Khim. Tverd. Topliva, 2019, no. 2, p. 3. https://doi.org/10.1134/S0023117719020105

Article  Google Scholar 

Zhou, H., Zeng, X., Li, A., Zhou, W., Tang, L., Hu, W., Fan, Q., Meng, X., Deng, H., Duan, L., Li, Y., Deng, Z., Hong, X., and Xiao, Yu., Nat. Commun., 2020, vol. 11, no. 1, p. 6183. https://doi.org/10.1038/s41467-020-19945-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, D., He, Z., Zhao, Y., Yang, Y., Shi, W., Li, X., and Maet, H., J. Am. Chem. Soc., 2021, vol. 143, no. 41, p. 17136 https://doi.org/10.1021/jacs.1c07711

Article  CAS  PubMed  Google Scholar 

Povolotskiy, A.V., Sheremet, T.I., Tveryanovich, Y.S., Glas. Phys. Chem., 2022, vol. 48, no. 6, p. 537. https://doi.org/10.1134/S1087659622600855

Article  CAS  Google Scholar 

Waite, J.H.Jr., Young, D.T., Cravens, T.E. , Coates, A.J., Crary, F.J.., Magee, B., and Westlakeet, J., Science, 2007, vol. 316, no. 5826, p. 870. https://doi.org/10.1126/science.1139727

Article  CAS  PubMed  Google Scholar 

Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T. A., and Williams, M.W., Icarus, 1984, vol. 60, no. 1, p. 127. https://doi.org/10.1016/0019-1035(84)90142-8

Article  CAS  Google Scholar 

Jorio, A., Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Pimenta, M.A., Hafner, J.H., Lieber, C.M., and Saitoet, R., Phys. Rev. B, 2002, vol. 65, no. 15, p. 155412. https://doi.org/10.1103/PhysRevB.65.155412

Article  CAS  Google Scholar 

Kuzmany, H., Pfeiffer, R., Salk, N., and Günther, B., Carbon N.Y., 2004, vol. 42, nos. 5–6, p. 911. https://doi.org/10.1016/j.carbon.2003.12.045

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif