miR-430 regulates zygotic mRNA during zebrafish embryogenesis

Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development. 2019;146(11):dev161471.

Article  CAS  PubMed  Google Scholar 

Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033–42.

Article  CAS  PubMed  Google Scholar 

Kushawah G, Hernandez-Huertas L, Abugattas-Nunez Del Prado J, Martinez-Morales JR, DeVore ML, Hassan H, et al. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev Cell. 2020;54(6):805–17 e7.

Article  CAS  PubMed  Google Scholar 

Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature. 2013;503(7476):360–4.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gagnon JA, Obbad K, Schier AF. The primary role of zebrafish nanog is in extra-embryonic tissue. Development. 2018;145(1):dev147793.

PubMed  PubMed Central  Google Scholar 

Harvey SA, Sealy I, Kettleborough R, Fenyes F, White R, Stemple D, et al. Identification of the zebrafish maternal and paternal transcriptomes. Development. 2013;140(13):2703–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan SH, Tang Y, Miao L, Darwich-Codore H, Vejnar CE, Beaudoin JD, et al. Brd4 and P300 confer transcriptional competency during zygotic genome activation. Dev Cell. 2019;49(6):867-81 e8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laue K, Rajshekar S, Courtney AJ, Lewis ZA, Goll MG. The maternal to zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish embryo. Nat Commun. 2019;10(1):1551.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Heyn P, Kircher M, Dahl A, Kelso J, Tomancak P, Kalinka AT, et al. The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep. 2014;6(2):285–92.

Article  CAS  PubMed  Google Scholar 

Riemondy K, Henriksen JC, Rissland OS. Intron dynamics reveal principles of gene regulation during the maternal-to-zygotic transition. RNA. 2023;29(5):596–608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nudelman G, Frasca A, Kent B, Sadler KC, Sealfon SC, Walsh MJ, et al. High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Res. 2018;28(9):1415–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Wang W, Li X, Zhao X, Zhao H, Yang W, et al. Temporal dynamic analysis of alternative splicing during embryonic development in zebrafish. Front Cell Dev Biol. 2022;10:879795.

Article  PubMed  PubMed Central  Google Scholar 

Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D, Bell GW, et al. Extensive alternative polyadenylation during zebrafish development. Genome Res. 2012;22(10):2054–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aanes H, Ostrup O, Andersen IS, Moen LF, Mathavan S, Collas P, et al. Differential transcript isoform usage pre- and post-zygotic genome activation in zebrafish. BMC Genomics. 2013;15(14):331.

Article  Google Scholar 

Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature. 2014;507(7492):381–5.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Nepal C, Hadzhiev Y, Previti C, Haberle V, Li N, Takahashi H, et al. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res. 2013;23(11):1938–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jukam D, Shariati SAM, Skotheim JM. Zygotic Genome Activation in Vertebrates. Dev Cell. 2017;42(4):316–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drexler HL, Choquet K, Churchman LS. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol Cell. 2020;77(5):985–98 e8.

Article  CAS  PubMed  Google Scholar 

Reimer KA, Mimoso CA, Adelman K, Neugebauer KM. Co-transcriptional splicing regulates 3’ end cleavage during mammalian erythropoiesis. Mol Cell  2021;81(5):998–1012 e7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herzog VA, Reichholf B, Neumann T, Rescheneder P, Bhat P, Burkard TR, et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat Methods. 2017;14(12):1198–204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhat P, Cabrera-Quio LE, Herzog VA, Fasching N, Pauli A, Ameres SL. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis. Cell Rep. 2023;42(2):112070.

Article  CAS  PubMed  Google Scholar 

Despic V, Neugebauer KM. RNA tales - how embryos read and discard messages from mom. J Cell Sci. 2018;131(5):jcs201996.

Article  PubMed  Google Scholar 

Despic V, Dejung M, Gu M, Krishnan J, Zhang J, Herzel L, et al. Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Res. 2017;27(7):1184–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi B, Zhang J, Heng J, Gong J, Zhang T, Li P, et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 2020;21(1):120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang H, Yeo J, Kim JG, Kim H, Lim J, Lee M, et al. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol Cell  2018;70(1):72–82 e7.

Article  CAS  PubMed  Google Scholar 

Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL, et al. RNA 5-Methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 2019;75(6):1188–202 e11.

Article  CAS  PubMed  Google Scholar 

Buchumenski I, Holler K, Appelbaum L, Eisenberg E, Junker JP, Levanon EY. Systematic identification of A-to-I RNA editing in zebrafish development and adult organs. Nucleic Acids Res. 2021;49(8):4325–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE, Qin Y, et al. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J. 2016;35(19):2087–103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medina-Munoz SG, Kushawah G, Castellano LA, Diez M, DeVore ML, Salazar MJB, et al. Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biol. 2021;22(1):14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishima Y, Tomari Y. Codon usage and 3’ UTR length determine maternal mRNA stability in zebrafish. Mol Cell. 2016;61(6):874–85.

Article  CAS  PubMed  Google Scholar 

Wu Q, Bazzini AA. Translation and mRNA stability control. Annu Rev Biochem. 2023;20(92):227–45.

Article  CAS  Google Scholar 

Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312(5770):75–9.

Article  ADS  CAS  PubMed  Google Scholar 

Hadzhiev Y, Wheatley L, Cooper L, Ansaloni F, Whalley C, Chen Z, et al. The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation. Dev Cell. 2023;58(2):155–70 e8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science. 2007;318(5848):271–4.

Article  ADS  CAS  PubMed 

留言 (0)

沒有登入
gif