Protein painting for structural and binding sites analysis via intracellular lysine reactivity profiling with o-phthalaldehyde

The three-dimensional structure and the molecular interaction of proteins determine their roles in many cellular processes. Chemical protein painting with protein mass spectrometry can identify changes in structural conformations and molecular interactions of proteins including their binding sites. Nevertheless, most current protein painting techniques identified protein targets and binding sites of drugs in vitro using cell lysate or purified protein. Here, we tested 11 membrane-permeable lysine-reactive chemical probes for intracellular covalent labeling of endogenous proteins, which reveals ortho-phthalaldehyde (OPA) as the most reactive probe in intracellular environment. An MS workflow and a new data analysis strategy termed RAPID (Reactive Amino acid Profiling by Inverse Detection) was developed to enhance detection sensitivity. RAPID with OPA successfully identified structural change induced by allosteric drug TEPP-46 on its target protein PKM2, and was applied to profile conformation change of the proteome occurring in cells during thermal denaturation. Application of RAPID-OPA on cells treated with geldanamycin, selumetinib, and staurosporine successfully revealed their binding sites on target proteins. Thus, RAPID-OPA for cellular protein painting permits the identification of ligand-binding sites and detection of protein structural changes occurring in cells.

This article is Open Access

Please wait while we load your content... Something went wrong. Try again?

留言 (0)

沒有登入
gif