SGLT2 inhibition, high-density lipoprotein, and kidney function: a mendelian randomization study

DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. NAT REV NEPHROL. 2021;17(5):319–34.

Article  CAS  PubMed  Google Scholar 

Fathi A, Vickneson K, Singh JS. SGLT2-inhibitors; more than just glycosuria and diuresis. HEART FAIL REV. 2021;26(3):623–42.

Article  CAS  PubMed  Google Scholar 

Xu P, Chen C, Zhang Y, Dzieciatkowska M, Brown BC, Zhang W, Xie T, Abdulmalik O, Song A, Tong C, et al. Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis. CELL METAB. 2022;34(2):299–316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gui Y, Wang Y, Palanza Z, Wang JL, Gupta P, Tao J, Qiao Y, Hargis G, Kreutzer DL, Bastacky SI, et al. Calponin 2 harnesses metabolic reprogramming to determine kidney fibrosis. MOL METAB. 2023;71:101712.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu YP, Zhang ZY, Wu HW, Fang LJ, Hu B, Tang C, Zhang YQ, Yin L, Tang DE, Zheng ZH, et al. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J TRANSL MED. 2022;20(1):420.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muscelli E, Astiarraga B, Barsotti E, Mari A, Schliess F, Nosek L, Heise T, Broedl UC, Woerle HJ, Ferrannini E. Metabolic consequences of acute and chronic empagliflozin administration in treatment-naive and metformin pretreated patients with type 2 diabetes. Diabetologia. 2016;59(4):700–8.

Article  CAS  PubMed  Google Scholar 

Tanaka S, Sugiura Y, Saito H, Sugahara M, Higashijima Y, Yamaguchi J, Inagi R, Suematsu M, Nangaku M, Tanaka T. Sodium-glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. KIDNEY INT. 2018;94(5):912–25.

Article  CAS  PubMed  Google Scholar 

Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5.

Article  CAS  PubMed  Google Scholar 

Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization JAMA. 2017;318(19):1925–6.

Article  PubMed  Google Scholar 

Burgess S, Timpson NJ, Ebrahim S, Davey SG. Mendelian randomization: where are we now and where are we going? INT J EPIDEMIOL. 2015;44(2):379–88.

Article  PubMed  Google Scholar 

The GTEx. Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.

Article  Google Scholar 

Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, Kirsten H, Saha A, Kreuzhuber R, Yazar S, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. NAT GENET. 2021;53(9):1300–10.

Article  PubMed  PubMed Central  Google Scholar 

Xu M, Zheng J, Hou T, Lin H, Wang T, Wang S, Lu J, Zhao Z, Li M, Xu Y, et al. SGLT2 inhibition, Choline metabolites, and Cardiometabolic diseases: a mediation mendelian randomization study. Diabetes Care. 2022;45(11):2718–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Yu Y, Sun Y, Yu B, Tan X, Wang B, Lu Y, Wang N. SGLT2 inhibition, circulating metabolites, and atrial fibrillation: a mendelian randomization study. CARDIOVASC DIABETOL. 2023;22(1):278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker VM, Kehoe PG, Martin RM, Davies NM. Repurposing antihypertensive drugs for the prevention of Alzheimer’s disease: a mendelian randomization study. INT J EPIDEMIOL. 2020;49(4):1132–40.

Article  PubMed  Google Scholar 

Ritchie SC, Surendran P, Karthikeyan S, Lambert SA, Bolton T, Pennells L, Danesh J, Di Angelantonio E, Butterworth AS, Inouye M. Quality control and removal of technical variation of NMR metabolic biomarker data in ∼ 120,000 UK Biobank participants. SCI DATA. 2023;10(1):64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AR, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. ANN INTERN MED. 2009;150(9):604–12.

Article  PubMed  PubMed Central  Google Scholar 

Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Muñoz A. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. KIDNEY INT. 2012;82(4):445–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teumer A, Li Y, Ghasemi S, Prins BP, Wuttke M, Hermle T, Giri A, Sieber KB, Qiu C, Kirsten H, et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. NAT COMMUN. 2019;10(1):4130.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Mahajan A, Spracklen CN, Zhang W, Ng M, Petty LE, Kitajima H, Yu GZ, Rüeger S, Speidel L, Kim YJ, et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. NAT GENET. 2022;54(5):560–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. STAT MED. 2008;27(8):1133–63.

Article  MathSciNet  PubMed  Google Scholar 

MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V. A comparison of methods to test mediation and other intervening variable effects. PSYCHOL METHODS. 2002;7(1):83–104.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Zuber V, Valdes-Marquez E, Sun BB, Hopewell JC. Mendelian randomization with fine-mapped genetic data: choosing from large numbers of correlated instrumental variables. GENET EPIDEMIOL. 2017;41(8):714–25.

Article  PubMed  PubMed Central  Google Scholar 

Impact of diabetes on the effects of sodium glucose co-. transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400(10365):1788–801.

Article  Google Scholar 

Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

Article  CAS  PubMed  Google Scholar 

Salvatore T, Carbonara O, Cozzolino D, Torella R, Nasti R, Lascar N, Sasso FC. Kidney in diabetes: from organ damage target to therapeutic target. CURR DRUG METAB. 2011;12(7):658–66.

Article  CAS  PubMed  Google Scholar 

Calapkulu M, Cander S, Gul OO, Ersoy C. Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center. Diabetes Metab Syndr. 2019;13(2):1031–4.

Article  PubMed  Google Scholar 

Szekeres Z, Toth K, Szabados E. The effects of SGLT2 inhibitors on lipid metabolism. Metabolites. 2021;11(2).

Kamijo Y, Ishii H, Yamamoto T, Kobayashi K, Asano H, Miake S, Kanda E, Urata H, Yoshida M. Potential impact on Lipoprotein subfractions in type 2 diabetes. Clin Med Insights Endocrinol Diabetes. 2019;12:1218437445.

Article  Google Scholar 

Liu Y, Xu J, Wu M, Xu B, Kang L. Empagliflozin protects against atherosclerosis progression by modulating lipid profiles and sympathetic activity. LIPIDS HEALTH DIS. 2021;20(1):5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li R, Chen JX, Lu Q, Geng TT, Xia PF, Wang Y, Chen LK, Shan ZL, Pan A, Liu G. Associations of lipoprotein subclasses with risk of all-cause and cardiovascular disease mortality in individuals with type 2 diabetes: a prospective cohort study. DIABETES OBES METAB. 2023;25(11):3259–67.

Article  CAS  PubMed  Google Scholar 

Du XM, Kim MJ, Hou L, Le Goff W, Chapman MJ, Van Eck M, Curtiss LK, Burnett JR, Cartland SP, Quinn CM, et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. CIRC RES. 2015;116(7):1133–42.

Article  CAS  PubMed  Google Scholar 

Zhong GC, Huang SQ, Peng Y, Wan L, Wu YQ, Hu TY, Hu JJ, Hao FB. HDL-C is associated with mortality from all causes, cardiovascular disease and cancer in a J-shaped dose-response fashion: a pooled analysis of 37 prospective cohort studies. EUR J PREV CARDIOL. 2020;27(11):1187–203.

Article  PubMed  Google Scholar 

Madsen CM, Varbo A, Nordestgaard BG. Novel insights from Human studies on the role of high-density lipoprotein in Mortality and Noncardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):128–40.

CAS  PubMed  Google Scholar 

Liu C, Dhindsa D, Almuwaqqat Z, Ko YA, Mehta A, Alkhoder AA, Alras Z, Desai SR, Patel KJ, Hooda A, et al. Association between High-Density Lipoprotein Cholesterol Levels and adverse Cardiovascular outcomes in high-risk populations. JAMA CARDIOL. 2022;7(7):672–80.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif