Akkermansia muciniphila extracellular vesicles have a protective effect against hypertension

Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation. 2016;133:2434–46.

Article  CAS  PubMed  Google Scholar 

Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013;110:9066–71.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PloS one. 2013;8:e76520.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu ZZ, Jose PA, Yang J, Zeng C. Importance of extracellular vesicles in hypertension. Exp Biol Med. 2021;246:342–53.

Article  CAS  Google Scholar 

Jian H, Liu Y, Wang X, Dong X, Zou X. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut–Liver–Brain Axes? Int J Mol Sci. 2023;24:3900.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie J, Li Q, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol. 2022;40:1173–94.

Article  CAS  PubMed  Google Scholar 

Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A, et al. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol. 2019;10:2155.

Article  PubMed  PubMed Central  Google Scholar 

Pluznick JL. Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep. 2017;19:1–5.

Article  CAS  Google Scholar 

Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9:206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren H, Zhu B, An Y, Xie F, Wang Y, Tan Y. Immune communication between the intestinal microbiota and the cardiovascular system. Immunol Lett. 2023;254:13–20.

Article  CAS  PubMed  Google Scholar 

Zhang G, Lin X, Shao Y, Su C, Tao J, Liu X. Berberine reduces endothelial injury and arterial stiffness in spontaneously hypertensive rats. Clin Exp Hypertens. 2020;42:257–65.

Article  CAS  PubMed  Google Scholar 

Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–93.

Article  CAS  PubMed  Google Scholar 

Bergmann J, Yamori Y, Okamoto K. Spontaneous hypertension in the rat: A model for human “essential” hypertension. Verh Dtsch Ges Inn Med. 1974;80:168–70.

Google Scholar 

Folkow B, Hallback M, Genest J, Koiw E, Kuchel O. Physiopathology of spontaneous hypertension in rats. Hypertension. 1977;507–29.

Harwani SC, Ratcliff J, Sutterwala FS, Ballas ZK, Meyerholz DK, Chapleau MW, et al. Nicotine mediates CD161a+ renal macrophage infiltration and premature hypertension in the spontaneously hypertensive rat. Circ Res. 2016;119:1101–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao L, Harrison DG. Inflammation in hypertension. Can J Cardiol. 2020;36:635–47.

Article  PubMed  Google Scholar 

Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76.

Article  CAS  PubMed  Google Scholar 

Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50:e450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz-Garrido N, Bonnin S, Riera M, Gimenez R, Badia J, Baldoma L. Transcriptomic microRNA Profiling of Dendritic Cells in Response to Gut Microbiota-Secreted Vesicles. Cells. 2020;9:1534.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matthias J, Heink S, Picard F, Zeiträg J, Kolz A, Chao Y-Y, et al. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J Clin Investig. 2020;130:4587–600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor LE, Gillis EE, Musall JB, Baban B, Sullivan JC. High-fat diet-induced hypertension is associated with a proinflammatory T cell profile in male and female Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol. 2018;315:H1713–H23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almolda B, Costa M, Montoya M, Gonzalez B, Castellano B. Increase in Th17 and T-reg lymphocytes and decrease of IL22 correlate with the recovery phase of acute EAE in rat. PloS One. 2011;6:e27473.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kim C-W, Kim JY, Lee S, Kim I. Dahl salt-resistant rats are protected against angiotensin II-induced hypertension. Biochem Pharmacol. 2022;203:115193.

Article  CAS  PubMed  Google Scholar 

Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol. 2001;2:816–22.

Article  CAS  PubMed  Google Scholar 

Katsuki M, Hirooka Y, Kishi T, Sunagawa K. Decreased proportion of Foxp3+ CD4+ regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J Hypertens. 2015;33:773–83.

Article  CAS  PubMed  Google Scholar 

Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, Xiao L, et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc Res. 2018;114:1547–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park BS, Lee J-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45:e66.

Article  PubMed  PubMed Central  Google Scholar 

Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci. 2004;117:1281–3.

Article  CAS  PubMed  Google Scholar 

Bae M, Cassilly CD, Liu X, Park S-M, Tusi BK, Chen X, et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature. 2022;608:168–73.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282:9358–63.

Article  CAS  PubMed  Google Scholar 

Itani H, McMaster W Jr, Saleh M, Nazarewicz R, Mikolajczyk T, Kaszuba A, et al. Activation of human T cells in hypertension novelty and significance. Hypertension. 2016;68:123–32.

Article  CAS  PubMed  Google Scholar 

Mills KH, Dungan LS, Jones SA, Harris J. The role of inflammasome-derived IL-1 in driving IL-17 responses. J Leukoc Biol. 2013;93:489–97.

Article  CAS  PubMed  Google Scholar 

Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond G. IL‐1β and IL‐18: inflammatory markers or mediators of hypertension? Br J Pharmacol. 2014;171:5589–602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JY, Lee E, Koo S, Kim CW, Kim I. Transfer of Th17 from adult spontaneous hypertensive rats accelerates development of hypertension in juvenile spontaneous hypertensive rats. BioMed Res Int. 2021;2021:1–13.

Google Scholar 

Kimura A, Kishimoto T. IL‐6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40:1830–5.

Article  CAS  PubMed  Google Scholar 

Kim JY, Lee S, Jang S, Kim C-W, Gu B-H, Kim M, et al. T helper cell polarity determines salt sensitivity and hypertension development. Hypertens Res. 2023;46:2168–78.

留言 (0)

沒有登入
gif