Fahn S, Bressman SB, Marsden CD (1998) Classification of dystonia. Adv Neurol 78:1–10
Albanese A, Bhatia K, Bressman SB et al (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord off J Mov Disord Soc 28:863–873. https://doi.org/10.1002/mds.25475
Thomsen M, Lange LM, Zech M, Lohmann K (2024) Genetics and Pathogenesis of Dystonia. Annu Rev Pathol Mech Dis 19:null. https://doi.org/10.1146/annurev-pathmechdis-051122-110756
Lange LM, Junker J, Loens S et al (2021) Genotype–phenotype relations for isolated dystonia genes: MDSGene systematic review. Mov Disord 36:1086–1103. https://doi.org/10.1002/mds.28485
Article CAS PubMed Google Scholar
Bressman SB, Raymond D, Fuchs T et al (2009) THAP1 (DYT6) mutations in early-onset primary dystonia. Lancet Neurol 8:441–446. https://doi.org/10.1016/S1474-4422(09)70081-X
Article CAS PubMed PubMed Central Google Scholar
Baumann H, Ott F, Weber J et al (2021) Linking penetrance and transcription in DYT-THAP1: insights from a human iPSC-Derived cortical model. Mov Disord 36:1381–1391. https://doi.org/10.1002/mds.28506
Article CAS PubMed Google Scholar
Roussigne M, Kossida S, Lavigne A-C et al (2003) The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem Sci 28:66–69. https://doi.org/10.1016/S0968-0004(02)00013-0
Article CAS PubMed Google Scholar
Bessière D, Lacroix C, Campagne S et al (2008) Structure-function analysis of the THAP Zinc Finger of THAP1, a large C2CH DNA-binding Module Linked to Rb/E2F pathways *. J Biol Chem 283:4352–4363. https://doi.org/10.1074/jbc.M707537200
Zakirova Z, Fanutza T, Bonet J et al (2018) Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLOS Genet 14:e1007169. https://doi.org/10.1371/journal.pgen.1007169
Article CAS PubMed PubMed Central Google Scholar
Diaw SH, Ott F, Münchau A et al (2022) Emerging role of a systems biology approach to elucidate factors of reduced penetrance: transcriptional changes in THAP1-linked dystonia as an example. Med Genet 34:131–141. https://doi.org/10.1515/medgen-2022-2126
Kaiser FJ, Osmanoric A, Rakovic A et al (2010) The dystonia gene DYT1 is repressed by the transcription factor THAP1 (DYT6). Ann Neurol 68:554–559. https://doi.org/10.1002/ana.22157
Article CAS PubMed Google Scholar
Xiromerisiou G, Houlden H, Scarmeas N et al (2012) THAP1 mutations and Dystonia phenotypes: genotype phenotype correlations. Mov Disord 27:1290–1294. https://doi.org/10.1002/mds.25146
Article CAS PubMed PubMed Central Google Scholar
Ruiz M, Perez-Garcia G, Ortiz-Virumbrales M et al (2015) Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia. Hum Mol Genet 24:7159–7170. https://doi.org/10.1093/hmg/ddv384
Article CAS PubMed PubMed Central Google Scholar
Gajos A, Golańska E, Sieruta M et al (2015) High variability of clinical symptoms in a Polish family with a novel THAP1 mutation. Int J Neurosci 125:755–759. https://doi.org/10.3109/00207454.2014.981749
Article CAS PubMed Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods San Diego Calif 25:402–408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Tellmann G (2006) The E-Method: a highly accurate technique for gene-expression analysis. Nat Methods 3:i–ii. https://doi.org/10.1038/nmeth894
Erogullari A, Hollstein R, Seibler P et al (2014) THAP1, the gene mutated in DYT6 dystonia, autoregulates its own expression. Biochim Biophys Acta BBA - Gene Regul Mech 1839:1196–1204. https://doi.org/10.1016/j.bbagrm.2014.07.019
Xian J, Parthasarathy S, Ruggiero SM et al (2022) Assessing the landscape of STXBP1-related disorders in 534 individuals. Brain 145:1668–1683. https://doi.org/10.1093/brain/awab327
Fan Y, Si Z, Wang L, Zhang L (2023) DYT-TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 17:1216929. https://doi.org/10.3389/fnins.2023.1216929
Article PubMed PubMed Central Google Scholar
Hollstein R, Reiz B, Kötter L et al (2017) Dystonia-causing mutations in the transcription factor THAP1 disrupt HCFC1 cofactor recruitment and alter gene expression. Hum Mol Genet 26:2975–2983. https://doi.org/10.1093/hmg/ddx187
Article CAS PubMed Google Scholar
Cheng F, Walter M, Wassouf Z et al (2020) Unraveling Molecular mechanisms of THAP1 missense mutations in DYT6 dystonia. J Mol Neurosci 70:999–1008. https://doi.org/10.1007/s12031-020-01490-2
Article CAS PubMed PubMed Central Google Scholar
Yellajoshyula D, Liang C-C, Pappas SS et al (2017) The DYT6 dystonia protein THAP1 regulates myelination within the Oligodendrocyte lineage. Dev Cell 42:52–67e4. https://doi.org/10.1016/j.devcel.2017.06.009
Article CAS PubMed PubMed Central Google Scholar
Rittiner JE, Caffall ZF, Hernández-Martinez R et al (2016) Functional genomic analyses of mendelian and sporadic disease identify impaired eIF2α signaling as a generalizable mechanism for Dystonia. Neuron 92:1238–1251. https://doi.org/10.1016/j.neuron.2016.11.012
Article CAS PubMed PubMed Central Google Scholar
Burnett SB, Vaughn LS, Sharma N et al (2020) Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and eIF2α signaling leading to a compromised stress response. Neurobiol Dis 146:105135. https://doi.org/10.1016/j.nbd.2020.105135
Article CAS PubMed Google Scholar
Pitale PM, Gorbatyuk O, Gorbatyuk M (2017) Neurodegeneration: keeping ATF4 on a tight leash. Front Cell Neurosci 11:410. https://doi.org/10.3389/fncel.2017.00410
Article CAS PubMed PubMed Central Google Scholar
Xiao D, Su X, Gao H et al (2021) The roles of Lpar1 in Central Nervous System disorders and diseases. Front Neurosci 15:710473. https://doi.org/10.3389/fnins.2021.710473
Article PubMed PubMed Central Google Scholar
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M (2022) Ying Yang 1 engagement in brain pathology. J Neurochem 161:236–253. https://doi.org/10.1111/jnc.15594
Article CAS PubMed Google Scholar
Petrella C, Ciotti MT, Nisticò R et al (2020) Involvement of bradykinin receptor 2 in nerve growth factor neuroprotective activity. Cells 9:2651. https://doi.org/10.3390/cells9122651
Article CAS PubMed PubMed Central Google Scholar
Bellin M, Marchetto MC, Gage FH, Mummery CL (2012) Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 13:713–726. https://doi.org/10.1038/nrm3448
Article CAS PubMed Google Scholar
Miskinyte G, Devaraju K, Grønning Hansen M et al (2017) Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Res Ther 8:207. https://doi.org/10.1186/s13287-017-0658-3
Article CAS PubMed PubMed Central Google Scholar
Yang Y, Chen R, Wu X et al (2019) Rapid and efficient Conversion of human fibroblasts into functional neurons by small molecules. Stem Cell Rep 13:862–876. https://doi.org/10.1016/j.stemcr.2019.09.007
LeDoux MS, Xiao J, Rudzińska M et al (2012) Genotype-phenotype correlations in THAP1 dystonia: molecular foundations and description of new cases. Parkinsonism Relat Disord 18:414–425. https://doi.org/10.1016/j.parkreldis.2012.02.001
Article PubMed PubMed Central Google Scholar
Yang Y, Wang J, Shi F et al (2021) BDKRB2 is a novel EMT-related biomarker and predicts poor survival in glioma. Aging 13:7499–7516. https://doi.org/10.18632/aging.202614
Article CAS PubMed PubMed Central Google Scholar
Frederick NM, Shah PV, Didonna A et al (2019) Loss of the dystonia gene Thap1 leads to transcriptional deficits that converge on common pathogenic pathways in dystonic syndromes. Hum Mol Genet 28:1343–1356. https://doi.org/10.1093/hmg/ddy433
留言 (0)