Metabolic regulation of skeletal cell fate and function

Peck, W. A., Birge, S. J. Jr. & Fedak, S. A. Bone cells: biochemical and biological studies after enzymatic isolation. Science 146, 1476–1477 (1964).

Article  CAS  PubMed  Google Scholar 

Otte, P. Basic cell metabolism of articular cartilage. Manometric studies. Z. Rheumatol. 50, 304–312 (1991).

CAS  PubMed  Google Scholar 

Borle, A. B., Nichols, N. & Nichols, G. Jr. Metabolic studies of bone in vitro. I. Normal bone. J. Biol. Chem. 235, 1206–1210 (1960).

Article  CAS  PubMed  Google Scholar 

Stegen, S. & Carmeliet, G. The skeletal vascular system – breathing life into bone tissue. Bone 115, 50–58 (2018).

Article  CAS  PubMed  Google Scholar 

Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27–38 (2011).

Article  PubMed  Google Scholar 

Ikeda, K. & Takeshita, S. The role of osteoclast differentiation and function in skeletal homeostasis. J. Biochem. 159, 1–8 (2016).

Article  CAS  PubMed  Google Scholar 

Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurenkova, A. D., Medvedeva, E. V., Newton, P. T. & Chagin, A. S. Niches for skeletal stem cells of mesenchymal origin. Front. Cell Dev. Biol. 8, 592 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Roberts, S. J., van Gastel, N., Carmeliet, G. & Luyten, F. P. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70, 10–18 (2015).

Article  PubMed  Google Scholar 

Ambrosi, T. H., Longaker, M. T. & Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front. Cell Dev. Biol. 7, 189 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Matsushita, Y., Ono, W. & Ono, N. Skeletal stem cells for bone development and repair: diversity matters. Curr. Osteoporos. Rep. 18, 189–198 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Feng, H. et al. Skeletal stem cells: origins, definitions, and functions in bone development and disease. Life Med. 1, 276–293 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Robling, A. G. & Bonewald, L. F. The osteocyte: new insights. Annu. Rev. Physiol. 82, 485–506 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delgado-Calle, J. & Bellido, T. The osteocyte as a signaling cell. Physiol. Rev. 102, 379–410 (2022).

Article  CAS  PubMed  Google Scholar 

Dobnig, H. & Turner, R. T. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136, 3632–3638 (1995).

Article  CAS  PubMed  Google Scholar 

Long, F. & Ornitz, D. M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol. 5, a008334 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Hallett, S. A., Ono, W. & Ono, N. The hypertrophic chondrocyte: to be or not to be. Histol. Histopathol. 36, 1021–1036 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Goldring, M. B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4, 269–285 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Z. et al. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J. Cell Mol. Med. 24, 5408–5419 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the Intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

Article  PubMed Central  Google Scholar 

Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

Article  CAS  PubMed  Google Scholar 

Intlekofer, A. M. & Finley, L. W. S. Metabolic signatures of cancer cells and stem cells. Nat. Metab. 1, 177–188 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Couasnay, G., Madel, M. B., Lim, J., Lee, B. & Elefteriou, F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J. Bone Miner. Res. 36, 1661–1679 (2021).

Article  CAS  PubMed  Google Scholar 

Tournaire, G. et al. Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle. Cell Rep. 40, 111105 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stegen, S. & Carmeliet, G. Hypoxia, hypoxia-inducible transcription factors and oxygen-sensing prolyl hydroxylases in bone development and homeostasis. Curr. Opin. Nephrol. Hypertens. 28, 328–335 (2019).

Article  CAS  PubMed  Google Scholar 

Lee, S. Y., Abel, E. D. & Long, F. Glucose metabolism induced by Bmp signaling is essential for murine skeletal development. Nat. Commun. 9, 4831 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Jeoung, N. H. Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers. Diabetes Metab. J. 39, 188–197 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Heinemann-Yerushalmi, L. et al. BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development. Dev. Cell 56, 1182–1194.e6 (2021).

Article  CAS  PubMed  Google Scholar 

van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Hu, G. et al. The amino acid sensor Eif2ak4/GCN2 is required for proliferation of osteoblast progenitors in mice. J. Bone Miner. Res. 35, 2004–2014 (2020).

Article  PubMed  Google Scholar 

Devignes, C. S., Carmeliet, G. & Stegen, S. Amino acid metabolism in skeletal cells. Bone Rep. 17, 101620 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stegen, S. et al. HIF-1ɑ promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265–279 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stegen, S. et al. Glutamine metabolism controls chondrocyte identity and function. Dev. Cell 53, 530–544.e8 (2020).

Article  CAS  PubMed  Google Scholar 

Yu, Y. et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29, 966–978.e4 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solidum, J. G. N., Jeong, Y., Heralde, F. 3rd & Park, D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front. Physiol. 14, 1137063 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loopmans, S., Stockmans, I., Carmeliet, G. & Stegen, S. Isolation and in vitro characterization of murine young-adult long bone skeletal progenitors. Front. Endocrinol. 13, 930358 (2022).

Article 

留言 (0)

沒有登入
gif