A method for predicting drugs that can boost the efficacy of immune checkpoint blockade

Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

Article  PubMed  Google Scholar 

Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 21, 509–528 (2022).

Article  CAS  PubMed  Google Scholar 

Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

Article  ADS  CAS  PubMed  Google Scholar 

Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kwon, M. et al. Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 11, 2168–2185 (2021).

Article  CAS  PubMed  Google Scholar 

Meric-Bernstam, F., Larkin, J., Tabernero, J. & Bonini, C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet 397, 1010–1022 (2021).

Article  CAS  PubMed  Google Scholar 

Yap, T. A. et al. Development of immunotherapy combination strategies in cancer. Cancer Discov. 11, 1368–1397 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Wang, Z. et al. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. Nat. Nanotechnol. 16, 1130–1140 (2021).

Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gide, T. N. et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell 35, 238–255 (2019).

Article  CAS  PubMed  Google Scholar 

Auslander, N. et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. 24, 1545–1549 (2018).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

Amato, C. M. et al. Pre-treatment mutational and transcriptomic landscape of responding metastatic melanoma patients to anti-PD1 immunotherapy. Cancers 12, 1943 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kim, S. T. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 24, 1449–1458 (2018).

Article  CAS  PubMed  Google Scholar 

Jung, H. et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat. Commun. 10, 4278 (2019).

Article  ADS  PubMed Central  PubMed  Google Scholar 

Cho, J.-W. et al. Genome-wide identification of differentially methylated promoters and enhancers associated with response to anti-PD-1 therapy in non-small cell lung cancer. Exp. Mol. Med. 52, 1550–1563 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bhattacharya, S. et al. ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58, 234–239 (2014).

Article  CAS  PubMed  Google Scholar 

Miao, Y.-R. et al. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv. Sci. 7, 1902880 (2020).

Article  CAS  Google Scholar 

Zemek, R. M. et al. Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment. Sci. Transl. Med. 11, eaav7816 (2019).

Article  PubMed  Google Scholar 

Lu, W. et al. Reprogramming immunosuppressive myeloid cells facilitates immunotherapy for colorectal cancer. EMBO Mol. Med. 13, e12798 (2021).

Article  CAS  PubMed  Google Scholar 

Pelly, V. S. et al. Anti-inflammatory drugs remodel the tumor immune environment to enhance immune checkpoint blockade efficacy. Cancer Discov. 11, 2602–2619 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ou, D.-L. et al. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J. Immunother. Cancer 9, e001657 (2021).

Article  PubMed Central  PubMed  Google Scholar 

Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Braverman, L. E. & Cooper, D. Werner & Ingbar’s the Thyroid: A Fundamental and Clinical Text (Lippincott Williams & Wilkins, 2012).

Zhu, S. et al. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 14, 156 (2021).

Article  PubMed Central  PubMed  Google Scholar 

PD-1/PD-L1 landscape. Cancer Research Institute www.cancerresearch.org/pd-1-pd-l1-landscape (2022).

Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

Article  PubMed  Google Scholar 

Beaver, J. A. & Pazdur, R. The Wild West of checkpoint inhibitor development. N. Engl. J. Med. 386, 1297–1301 (2022).

Article  CAS  PubMed  Google Scholar 

Muir, C. A. et al. Thyroid immune-related adverse events following immune checkpoint inhibitor treatment. J. Clin. Endocrinol. Metab. 106, e3704–e3713 (2021).

Article  PubMed  Google Scholar 

Brancatella, A. et al. Graves’ disease induced by immune checkpoint inhibitors: a case report and review of the literature. Eur. Thyroid J. 8, 192–195 (2019).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kotwal, A., Kottschade, L. & Ryder, M. PD-L1 inhibitor-induced thyroiditis is associated with better overall survival in cancer patients. Thyroid 30, 177–184 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Muir, C. A., Tsang, V. H. M., Menzies, A. M. & Clifton-Bligh, R. J. Immune related adverse events of the thyroid—a narrative review. Front. Endocrinol. 13, 886930 (2022).

Article  Google Scholar 

Khan, Z. et al. Genetic variation associated with thyroid autoimmunity shapes the systemic immune response to PD-1 checkpoint blockade. Nat. Commun. 12, 3355 (2021).

Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

Dawidowska, A. et al. Immune-related thyroid adverse events predict response to PD-1 blockade in patients with melanoma. Cancers 14, 1248 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Yang, M. et al. ICBatlas: a comprehensive resource for depicting immune checkpoint blockade therapy characteristics from transcriptome profiles. Cancer Immunol. Res. 10, 1398–1406 (2022).

Article  CAS  PubMed  Google Scholar 

Di Tacchio, M. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol. Res. 7, 1910–1927 (2019).

Article  PubMed  Google Scholar 

Gu, S. S. et al. Therapeutically increasing MHC-I expression potentiates immune checkpoint blockade. Cancer Discov. 11, 1524–1541 (2021).

Article 

留言 (0)

沒有登入
gif