A signal processing tool for extracting features from arterial blood pressure and photoplethysmography waveforms

Abstract

Arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms contain valuable clinical information and play a crucial role in cardiovascular health monitoring, medical research, and managing medical conditions. The features extracted from PPG waveforms have various clinical applications ranging from blood pressure monitoring to nociception monitoring, while features from ABP waveforms can be used to calculate cardiac output and predict hypertension or hypotension. In recent years, many machine learning models have been proposed to utilize both PPG and ABP waveform features for these healthcare applications. However, the lack of standardized tools for extracting features from these waveforms could potentially affect their clinical effectiveness. In this paper, we propose an automatic signal processing tool for extracting features from ABP and PPG waveforms. Additionally, we generated a PPG feature library from a large perioperative dataset comprising 17,327 patients using the proposed tool. This PPG feature library can be used to explore the potential of these extracted features to develop machine learning models for non-invasive blood pressure estimation.

Competing Interest Statement

Dr. Cannesson is a consultant for Edwards Lifesciences and Masimo Corp, and has funded research from Edwards Lifesciences and Masimo Corp. He is also the founder of Sironis and Perceptive Medical and he owns patents and receives royalties for closed loop hemodynamic management technologies that have been licensed to Edwards Lifesciences

Funding Statement

Research supported by the National Institutes of Health (NIH):R01EB029751 and R01HL144692

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Institutional Review Board of University of California, Los Angeles gave ethical approval for this work.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

The interested parties may contact the first author at (rpal@mednet.ucla.edu) or the corresponding author at (mcannesson@mednet.ucla.edu) to request access to the MLORD dataset, developed feature library with the detailed description (supplementary material file) of extracted features, and proposed featurization tool.

留言 (0)

沒有登入
gif